Coordinate Systems

Introduction to projections and coordinate systems

From the r.proj man page:

"Map projections are a method of representing information from a curved surface (usually a spheroid) in two dimensions, typically to allow indexing through cartesian coordinates. There are a wide variety of projections, with common ones divided into a number of classes, including cylindrical and pseudo-cylindrical, conic and pseudo-conic, and azimuthal methods, each of which may be conformal, equal-area, or neither.

The particular projection chosen depends on the purpose of the project, and the size, shape and location of the area of interest. For example, normal cylindrical projections are good for maps which are of greater extent east-west than north-south and in equatorial regions, while conic projections are better in mid-latitudes; transverse cylindrical projections are used for maps which are of greater extent north-south than east-west; azimuthal projections are used for polar regions. Oblique versions of any of these may also be used. Conformal projections preserve angular relationships, and better preserve arc-length, while equal-area projections are more appropriate for statistical studies and work in which the amount of material is important.

Projections are defined by precise mathematical relations, so the method of projecting coordinates from a geographic reference frame (latitude-longitude) into a projected cartesian reference frame (eg metres) is governed by these equations. Inverse projections can also be achieved. The public-domain Unix software package PROJ.4 has been designed to perform these transformations, and the user's manual contains a detailed description of over 100 useful projections. This also includes a programmers library of the projection methods to support other software development.

Thus, converting a "vector" map - in which objects are located with arbitrary spatial precision - from one projection into another is usually accomplished by a simple two-step process: first the location of all the points in the map are converted from the source through an inverse projection into latitude-longitude, and then through a forward projection into the target. (Of course the procedure will be one-step if either the source or target is in geographic coordinates.)

Converting a "raster map", or image, between different projections, however, involves additional considerations. A raster may be considered to represent a sampling of a process at a regular, ordered set of locations. The set of locations that lie at the intersections of a cartesian grid in one projection will not, in general, coincide with the sample points in another projection. Thus, the conversion of raster maps involves an interpolation step in which the values of points at intermediate locations relative to the source grid are estimated."

Projections in GRASS

See the list of supported projections for an idea of which projections are supported in GRASS.