Source code for grass.pygrass.vector.geometry

"""
Created on Wed Jul 18 10:46:25 2012

@author: pietro
"""

import ctypes
import re
from collections import namedtuple

import numpy as np

import grass.lib.gis as libgis
import grass.lib.vector as libvect

from grass.pygrass.utils import decode
from grass.pygrass.errors import GrassError, mapinfo_must_be_set

from grass.pygrass.vector.basic import Ilist, Bbox, Cats
from grass.pygrass.vector import sql

# For test purposes
test_vector_name = "geometry_doctest_map"

LineDist = namedtuple("LineDist", "point dist spdist sldist")

WKT = {
    r"POINT\((.*)\)": "point",  # 'POINT\(\s*([+-]*\d+\.*\d*)+\s*\)'
    r"LINESTRING\((.*)\)": "line",
}


[docs]def read_WKT(string): """Read the string and return a geometry object **WKT**: :: POINT(0 0) LINESTRING(0 0,1 1,1 2) POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1)) MULTIPOINT(0 0,1 2) MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4)) MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1))) GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4)) **EWKT**: :: POINT(0 0 0) -- XYZ SRID=32632;POINT(0 0) -- XY with SRID POINTM(0 0 0) -- XYM POINT(0 0 0 0) -- XYZM SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1)) POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0)) MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0), (1 1 0,2 1 0,2 2 0,1 2 0,1 1 0)), ((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0))) GEOMETRYCOLLECTIONM( POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5) ) MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4) ) POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) ) TRIANGLE ((0 0, 0 9, 9 0, 0 0)) TIN( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)) ) """ for regexp, obj in WKT.items(): if re.match(regexp, string): geo = 10 return obj(geo)
[docs]def read_WKB(buff): """Read the binary buffer and return a geometry object"""
[docs]def intersects(lineA, lineB, with_z=False): """Return a list of points >>> lineA = Line([(0, 0), (4, 0)]) >>> lineB = Line([(2, 2), (2, -2)]) >>> intersects(lineA, lineB) Line([Point(2.000000, 0.000000)]) """ line = Line() if libvect.Vect_line_get_intersections( lineA.c_points, lineB.c_points, line.c_points, int(with_z) ): return line return []
# ============================================= # GEOMETRY # =============================================
[docs]def get_xyz(pnt): """Return a tuple with: x, y, z. >>> pnt = Point(0, 0) >>> get_xyz(pnt) (0.0, 0.0, 0.0) >>> get_xyz((1, 1)) (1, 1, 0.0) >>> get_xyz((1, 1, 2)) (1, 1, 2) >>> get_xyz((1, 1, 2, 2)) #doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: The the format of the point is not supported: (1, 1, 2, 2) """ if isinstance(pnt, Point): if pnt.is2D: x, y = pnt.x, pnt.y z = 0.0 else: x, y, z = pnt.x, pnt.y, pnt.z elif len(pnt) == 2: x, y = pnt z = 0.0 elif len(pnt) == 3: x, y, z = pnt else: str_error = "The the format of the point is not supported: {0!r}" raise ValueError(str_error.format(pnt)) return x, y, z
[docs]class Attrs: def __init__(self, cat, table, writeable=False): self._cat = None self.cond = "" self.table = table self.cat = cat self.writeable = writeable def _get_cat(self): return self._cat def _set_cat(self, value): self._cat = value if value: # update condition self.cond = "%s=%d" % (self.table.key, value) cat = property(fget=_get_cat, fset=_set_cat, doc="Set and obtain cat value") def __getitem__(self, keys): """Return the value stored in the attribute table. >>> from grass.pygrass.vector import VectorTopo >>> test_vect = VectorTopo(test_vector_name) >>> test_vect.open('r') >>> v1 = test_vect[1] >>> v1.attrs['name'] 'point' >>> v1.attrs['name', 'value'] ('point', 1.0) >>> test_vect.close() """ sqlcode = sql.SELECT_WHERE.format( cols=(keys if np.isscalar(keys) else ", ".join(keys)), tname=self.table.name, condition=self.cond, ) cur = self.table.execute(sqlcode) results = cur.fetchone() if results is not None: return results[0] if len(results) == 1 else results def __setitem__(self, keys, values): """Set value of a given column of a table attribute. >>> from grass.pygrass.vector import VectorTopo >>> test_vect = VectorTopo(test_vector_name) >>> test_vect.open('r') >>> v1 = test_vect[1] >>> v1.attrs['name'] 'point' >>> v1.attrs['name'] = "new_point_1" >>> v1.attrs['name'] 'new_point_1' >>> v1.attrs['name', 'value'] = "new_point_2", 100. >>> v1.attrs['name', 'value'] ('new_point_2', 100.0) >>> v1.attrs['name', 'value'] = "point", 1. >>> v1.attrs.table.conn.commit() >>> test_vect.close() """ if not self.writeable: str_err = "You can only read the attributes if the map is in another mapset" raise GrassError(str_err) if np.isscalar(keys): keys, values = ((keys,), (values,)) # check if key is a column of the table or not for key in keys: if key not in self.table.columns: raise KeyError("Column: %s not in table" % key) # prepare the string using as paramstyle: qmark vals = ",".join(["%s=?" % k for k in keys]) # "UPDATE {tname} SET {values} WHERE {condition};" sqlcode = sql.UPDATE_WHERE.format( tname=self.table.name, values=vals, condition=self.cond ) self.table.execute(sqlcode, values=values) # self.table.conn.commit() def __dict__(self): """Return a dict of the attribute table row.""" return dict(zip(self.keys(), self.values()))
[docs] def values(self): """Return the values of the attribute table row. >>> from grass.pygrass.vector import VectorTopo >>> test_vect = VectorTopo(test_vector_name) >>> test_vect.open('r') >>> v1 = test_vect[1] >>> v1.attrs.values() (1, 'point', 1.0) >>> test_vect.close() """ # SELECT {cols} FROM {tname} WHERE {condition} cur = self.table.execute( sql.SELECT_WHERE.format( cols="*", tname=self.table.name, condition=self.cond ) ) return cur.fetchone()
[docs] def keys(self): """Return the column name of the attribute table. >>> from grass.pygrass.vector import VectorTopo >>> test_vect = VectorTopo(test_vector_name) >>> test_vect.open('r') >>> v1 = test_vect[1] >>> v1.attrs.keys() ['cat', 'name', 'value'] >>> test_vect.close() """ return self.table.columns.names()
[docs] def commit(self): """Save the changes""" self.table.conn.commit()
[docs]class Geo: """ Base object for different feature types """ gtype = None def __init__( self, v_id=0, c_mapinfo=None, c_points=None, c_cats=None, table=None, writeable=False, is2D=True, free_points=False, free_cats=False, ): """Constructor of a geometry object :param v_id: The vector feature id :param c_mapinfo: A pointer to the vector mapinfo structure :param c_points: A pointer to a libvect.line_pnts structure, this is optional, if not set an internal structure will be allocated and free'd at object destruction :param c_cats: A pointer to a libvect.line_cats structure, this is optional, if not set an internal structure will be allocated and free'd at object destruction :param table: The attribute table to select attributes for this feature :param writeable: Not sure what this is for? :param is2D: If True this feature has two dimensions, False if this feature has three dimensions :param free_points: Set this True if the provided c_points structure should be free'd at object destruction, be aware that no other object should free them, otherwise you can expect a double free corruption segfault :param free_cats: Set this True if the provided c_cats structure should be free'd at object destruction, be aware that no other object should free them, otherwise you can expect a double free corruption segfault """ self.id = v_id # vector id self.c_mapinfo = c_mapinfo self.is2D = ( is2D if is2D is not None else bool(libvect.Vect_is_3d(self.c_mapinfo) != 1) ) # Set True if cats and points are allocated by this object # to free the cats and points structures on destruction self._free_points = False self._free_cats = False read = False # set c_points if c_points is None: self.c_points = ctypes.pointer(libvect.line_pnts()) self._free_points = True read = True else: self.c_points = c_points self._free_points = free_points # set c_cats if c_cats is None: self.c_cats = ctypes.pointer(libvect.line_cats()) self._free_cats = free_cats read = True else: self.c_cats = c_cats self._free_cats = True if self.id and self.c_mapinfo is not None and read: self.read() # set the attributes as last thing to do self.attrs = None if table is not None and self.cat is not None: self.attrs = Attrs(self.cat, table, writeable) def __del__(self): """Take care of the allocated line_pnts and line_cats allocation""" if self._free_points is True and self.c_points: if self.c_points.contents.alloc_points > 0: # print("G_free(points) [%i]"%(self.c_points.contents.alloc_points)) libgis.G_free(self.c_points.contents.x) libgis.G_free(self.c_points.contents.y) if self.c_points.contents.z: libgis.G_free(self.c_points.contents.z) if self._free_cats is True and self.c_cats: if self.c_cats.contents.alloc_cats > 0: # print("G_free(cats) [%i]"%(self.c_cats.contents.alloc_cats)) libgis.G_free(self.c_cats.contents.cat) @property def cat(self): if self.c_cats.contents.cat: return self.c_cats.contents.cat.contents.value
[docs] def has_topology(self): if self.c_mapinfo is not None: return self.c_mapinfo.contents.level == 2 return False
[docs] @mapinfo_must_be_set def read(self): """Read and set the coordinates of the centroid from the vector map, using the centroid_id and calling the Vect_read_line C function""" self.id, ftype, c_points, c_cats = c_read_line( self.id, self.c_mapinfo, self.c_points, self.c_cats )
[docs] def to_wkt(self): """Return a "well know text" (WKT) geometry string, this method uses the GEOS implementation in the vector library. :: >>> pnt = Point(10, 100) >>> pnt.to_wkt() 'POINT (10.0000000000000000 100.0000000000000000)' """ return decode( libvect.Vect_line_to_wkt(self.c_points, self.gtype, not self.is2D) )
[docs] def to_wkb(self): """Return a "well know binary" (WKB) geometry byte array, this method uses the GEOS implementation in the vector library. :: >>> pnt = Point(10, 100) >>> wkb = pnt.to_wkb() >>> len(wkb) 21 """ size = ctypes.c_size_t() barray = libvect.Vect_line_to_wkb( self.c_points, self.gtype, not self.is2D, ctypes.byref(size) ) return ctypes.string_at(barray, size.value)
[docs]class Point(Geo): """Instantiate a Point object that could be 2 or 3D, default parameters are 0. :: >>> pnt = Point() >>> pnt.x 0.0 >>> pnt.y 0.0 >>> pnt.z >>> pnt.is2D True >>> pnt Point(0.000000, 0.000000) >>> pnt.z = 0 >>> pnt.is2D False >>> pnt Point(0.000000, 0.000000, 0.000000) >>> print(pnt) POINT Z (0.0000000000000000 0.0000000000000000 0.0000000000000000) >>> c_points = ctypes.pointer(libvect.line_pnts()) >>> c_cats = ctypes.pointer(libvect.line_cats()) >>> p = Point(c_points = c_points, c_cats=c_cats) >>> del p >>> c_points = ctypes.pointer(libvect.line_pnts()) >>> c_cats = ctypes.pointer(libvect.line_cats()) >>> p = Point(c_points=c_points, c_cats=c_cats, free_points=True, ... free_cats=True) >>> del p .. """ # geometry type gtype = libvect.GV_POINT def __init__(self, x=0, y=0, z=None, **kargs): super().__init__(**kargs) if self.id and self.c_mapinfo: self.read() else: self.is2D = z is None z = z if z is not None else 0 libvect.Vect_append_point(self.c_points, x, y, z) def _get_x(self): return self.c_points.contents.x[0] def _set_x(self, value): self.c_points.contents.x[0] = value x = property(fget=_get_x, fset=_set_x, doc="Set and obtain x coordinate") def _get_y(self): return self.c_points.contents.y[0] def _set_y(self, value): self.c_points.contents.y[0] = value y = property(fget=_get_y, fset=_set_y, doc="Set and obtain y coordinate") def _get_z(self): if self.is2D: return None return self.c_points.contents.z[0] def _set_z(self, value): if value is None: self.is2D = True self.c_points.contents.z[0] = 0 else: self.c_points.contents.z[0] = value self.is2D = False z = property(fget=_get_z, fset=_set_z, doc="Set and obtain z coordinate") def __str__(self): return self.to_wkt() def __repr__(self): return "Point(%s)" % ", ".join(["%f" % coor for coor in self.coords()]) def __eq__(self, pnt): """Return True if the coordinates are the same. >>> p0 = Point() >>> p1 = Point() >>> p2 = Point(1, 1) >>> p0 == p1 True >>> p1 == p2 False """ if isinstance(pnt, Point): return pnt.coords() == self.coords() return Point(*pnt).coords() == self.coords() def __ne__(self, other): return not self == other # Restore Python 2 hashing behaviour on Python 3 __hash__ = object.__hash__
[docs] def coords(self): """Return a tuple with the point coordinates. :: >>> pnt = Point(10, 100) >>> pnt.coords() (10.0, 100.0) If the point is 2D return a x, y tuple. But if we change the ``z`` the Point object become a 3D point, therefore the method return a x, y, z tuple. :: >>> pnt.z = 1000. >>> pnt.coords() (10.0, 100.0, 1000.0) .. """ if self.is2D: return self.x, self.y return self.x, self.y, self.z
[docs] def to_wkt_p(self): """Return a "well know text" (WKT) geometry string Python implementation. :: >>> pnt = Point(10, 100) >>> pnt.to_wkt_p() 'POINT(10.000000 100.000000)' .. warning:: Only ``POINT`` (2/3D) are supported, ``POINTM`` and ``POINT`` with: ``XYZM`` are not supported yet. """ return "POINT(%s)" % " ".join(["%f" % coord for coord in self.coords()])
[docs] def distance(self, pnt): """Calculate distance of 2 points, using the Vect_points_distance C function, If one of the point have z == None, return the 2D distance. :param pnt: the point for calculate the distance :type pnt: a Point object or a tuple with the coordinates >>> pnt0 = Point(0, 0, 0) >>> pnt1 = Point(1, 0) >>> pnt0.distance(pnt1) 1.0 >>> pnt1.z = 1 >>> pnt1 Point(1.000000, 0.000000, 1.000000) >>> pnt0.distance(pnt1) 1.4142135623730951 """ if self.is2D or pnt.is2D: return libvect.Vect_points_distance(self.x, self.y, 0, pnt.x, pnt.y, 0, 0) return libvect.Vect_points_distance( self.x, self.y, self.z, pnt.x, pnt.y, pnt.z, 1 )
[docs] def buffer( self, dist=None, dist_x=None, dist_y=None, angle=0, round_=True, tol=0.1 ): """Return the buffer area around the point, using the ``Vect_point_buffer2`` C function. :param dist: the distance around the point :type dist: num :param dist_x: the distance along x :type dist_x: num :param dist_y: the distance along y :type dist_y: num :param angle: the angle between 0x and major axis :type angle: num :param round_: to make corners round :type round_: bool :param tol: fix the maximum distance between theoretical arc and output segments :type tol: float :returns: the buffer as Area object >>> pnt = Point(0, 0) >>> boundary, centroid = pnt.buffer(10) >>> boundary #doctest: +ELLIPSIS Line([Point(10.000000, 0.000000),...Point(10.000000, 0.000000)]) >>> centroid Point(0.000000, 0.000000) """ if dist is not None: dist_x = dist dist_y = dist elif not dist_x or not dist_y: msg = "buffer expected 1 arguments, got 0" raise TypeError(msg) bound = Line() p_points = ctypes.pointer(bound.c_points) libvect.Vect_point_buffer2( self.x, self.y, dist_x, dist_y, angle, int(round_), tol, p_points ) return (bound, self)
[docs]class Line(Geo): """Instantiate a new Line with a list of tuple, or with a list of Point. :: >>> line = Line([(0, 0), (1, 1), (2, 0), (1, -1)]) >>> line #doctest: +NORMALIZE_WHITESPACE Line([Point(0.000000, 0.000000), Point(1.000000, 1.000000), Point(2.000000, 0.000000), Point(1.000000, -1.000000)]) .. """ # geometry type gtype = libvect.GV_LINE def __init__(self, points=None, **kargs): super().__init__(**kargs) if points is not None: for pnt in points: self.append(pnt) def __getitem__(self, key): """Get line point of given index, slice allowed. :: >>> line = Line([(0, 0), (1, 1), (2, 2), (3, 3)]) >>> line[1] Point(1.000000, 1.000000) >>> line[-1] Point(3.000000, 3.000000) >>> line[:2] [Point(0.000000, 0.000000), Point(1.000000, 1.000000)] .. """ # TODO: # line[0].x = 10 is not working # pnt.c_px = ctypes.pointer(self.c_points.contents.x[indx]) # pnt.c_px = ctypes.cast(id(self.c_points.contents.x[indx]), # ctypes.POINTER(ctypes.c_double)) if isinstance(key, slice): # import pdb; pdb.set_trace() # Get the start, stop, and step from the slice return [ Point( self.c_points.contents.x[indx], self.c_points.contents.y[indx], None if self.is2D else self.c_points.contents.z[indx], ) for indx in range(*key.indices(len(self))) ] if isinstance(key, int): if key < 0: # Handle negative indices key += self.c_points.contents.n_points if key >= self.c_points.contents.n_points: msg = "Index out of range" raise IndexError(msg) return Point( self.c_points.contents.x[key], self.c_points.contents.y[key], None if self.is2D else self.c_points.contents.z[key], ) raise ValueError("Invalid argument type: %r." % key) def __setitem__(self, indx, pnt): """Change the coordinate of point. :: >>> line = Line([(0, 0), (1, 1)]) >>> line[0] = (2, 2) >>> line Line([Point(2.000000, 2.000000), Point(1.000000, 1.000000)]) .. """ x, y, z = get_xyz(pnt) self.c_points.contents.x[indx] = x self.c_points.contents.y[indx] = y self.c_points.contents.z[indx] = z def __iter__(self): """Return a Point generator of the Line""" return (self.__getitem__(i) for i in range(self.__len__())) def __len__(self): """Return the number of points of the line.""" return self.c_points.contents.n_points def __str__(self): return self.to_wkt() def __repr__(self): return "Line([%s])" % ", ".join([repr(pnt) for pnt in self.__iter__()])
[docs] def point_on_line(self, distance, angle=0, slope=0): """Return a Point object on line in the specified distance, using the `Vect_point_on_line` C function. Raise a ValueError If the distance exceed the Line length. :: >>> line = Line([(0, 0), (1, 1)]) >>> line.point_on_line(5) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: The distance exceed the length of the line, that is: 1.414214 >>> line.point_on_line(1) Point(0.707107, 0.707107) .. """ # instantiate an empty Point object maxdist = self.length() if distance > maxdist: str_err = "The distance exceed the length of the line, that is: %f" raise ValueError(str_err % maxdist) pnt = Point(0, 0, -9999) if not libvect.Vect_point_on_line( self.c_points, distance, pnt.c_points.contents.x, pnt.c_points.contents.y, pnt.c_points.contents.z, ctypes.pointer(ctypes.c_double(angle)), ctypes.pointer(ctypes.c_double(slope)), ): msg = "Vect_point_on_line gave an error." raise ValueError(msg) pnt.is2D = self.is2D return pnt
[docs] @mapinfo_must_be_set def alive(self): """Return True if this line is alive or False if this line is dead or its index is out of range. """ return bool(libvect.Vect_line_alive(self.c_mapinfo, self.id))
[docs] def append(self, pnt): """Appends one point to the end of a line, using the ``Vect_append_point`` C function. :param pnt: the point to add to line :type pnt: a Point object or a tuple with the coordinates >>> line = Line() >>> line.append((10, 100)) >>> line Line([Point(10.000000, 100.000000)]) >>> line.append((20, 200)) >>> line Line([Point(10.000000, 100.000000), Point(20.000000, 200.000000)]) Like python list. """ x, y, z = get_xyz(pnt) libvect.Vect_append_point(self.c_points, x, y, z)
[docs] def bbox(self, bbox=None): """Return the bounding box of the line, using ``Vect_line_box`` C function. :: >>> line = Line([(0, 0), (0, 1), (2, 1), (2, 0)]) >>> bbox = line.bbox() >>> bbox Bbox(1.0, 0.0, 2.0, 0.0) .. """ bbox = bbox or Bbox() libvect.Vect_line_box(self.c_points, bbox.c_bbox) return bbox
[docs] def extend(self, line, forward=True): """Appends points to the end of a line. :param line: it is possible to extend a line, give a list of points, or directly with a line_pnts struct. :type line: Line object of list of points :param forward: if forward is True the line is extend forward otherwise is extend backward. The method use the `Vect_append_points` C function. :type forward: bool >>> line = Line([(0, 0), (1, 1)]) >>> line.extend( Line([(2, 2), (3, 3)]) ) >>> line #doctest: +NORMALIZE_WHITESPACE Line([Point(0.000000, 0.000000), Point(1.000000, 1.000000), Point(2.000000, 2.000000), Point(3.000000, 3.000000)]) """ # set direction direction = libvect.GV_FORWARD if forward else libvect.GV_BACKWARD # check if is a Line object if isinstance(line, Line): c_points = line.c_points else: # instantiate a Line object lin = Line() for pnt in line: # add the points to the line lin.append(pnt) c_points = lin.c_points libvect.Vect_append_points(self.c_points, c_points, direction)
[docs] def insert(self, indx, pnt): """Insert new point at index position and move all old points at that position and above up, using ``Vect_line_insert_point`` C function. :param indx: the index where add new point :type indx: int :param pnt: the point to add :type pnt: a Point object >>> line = Line([(0, 0), (1, 1)]) >>> line.insert(0, Point(1.000000, -1.000000) ) >>> line #doctest: +NORMALIZE_WHITESPACE Line([Point(1.000000, -1.000000), Point(0.000000, 0.000000), Point(1.000000, 1.000000)]) """ if indx < 0: # Handle negative indices indx += self.c_points.contents.n_points if indx >= self.c_points.contents.n_points: msg = "Index out of range" raise IndexError(msg) x, y, z = get_xyz(pnt) libvect.Vect_line_insert_point(self.c_points, indx, x, y, z)
[docs] def length(self): """Calculate line length, 3D-length in case of 3D vector line, using `Vect_line_length` C function. :: >>> line = Line([(0, 0), (1, 1), (0, 1)]) >>> line.length() 2.414213562373095 .. """ return libvect.Vect_line_length(self.c_points)
[docs] def length_geodesic(self): """Calculate line length, using `Vect_line_geodesic_length` C function. :: >>> line = Line([(0, 0), (1, 1), (0, 1)]) >>> line.length_geodesic() 2.414213562373095 .. """ return libvect.Vect_line_geodesic_length(self.c_points)
[docs] def distance(self, pnt): """Calculate the distance between line and a point. :param pnt: the point to calculate distance :type pnt: a Point object or a tuple with the coordinates Return a namedtuple with: * point: the closest point on the line, * dist: the distance between these two points, * spdist: distance to point on line from segment beginning * sldist: distance to point on line form line beginning along line The distance is compute using the ``Vect_line_distance`` C function. >>> point = Point(2.3, 0.5) >>> line = Line([(0, 0), (2, 0), (3, 0)]) >>> line.distance(point) #doctest: +NORMALIZE_WHITESPACE LineDist(point=Point(2.300000, 0.000000), dist=0.5, spdist=0.2999999999999998, sldist=2.3) """ # instantite outputs cx = ctypes.c_double(0) cy = ctypes.c_double(0) cz = ctypes.c_double(0) dist = ctypes.c_double(0) sp_dist = ctypes.c_double(0) lp_dist = ctypes.c_double(0) libvect.Vect_line_distance( self.c_points, pnt.x, pnt.y, 0 if pnt.is2D else pnt.z, 0 if self.is2D else 1, ctypes.byref(cx), ctypes.byref(cy), ctypes.byref(cz), ctypes.byref(dist), ctypes.byref(sp_dist), ctypes.byref(lp_dist), ) # instantiate the Point class point = Point(cx.value, cy.value, cz.value) point.is2D = self.is2D return LineDist(point, dist.value, sp_dist.value, lp_dist.value)
[docs] @mapinfo_must_be_set def first_cat(self): """Fetches FIRST category number for given vector line and field, using the ``Vect_get_line_cat`` C function. .. warning:: Not implemented yet. """
# TODO: add this method. # libvect.Vect_get_line_cat(self.c_mapinfo, self.id, self.field)
[docs] def pop(self, indx): """Return the point in the index position and remove from the Line. :param indx: the index where add new point :type indx: int >>> line = Line([(0, 0), (1, 1), (2, 2)]) >>> midle_pnt = line.pop(1) >>> midle_pnt #doctest: +NORMALIZE_WHITESPACE Point(1.000000, 1.000000) >>> line #doctest: +NORMALIZE_WHITESPACE Line([Point(0.000000, 0.000000), Point(2.000000, 2.000000)]) """ if indx < 0: # Handle negative indices indx += self.c_points.contents.n_points if indx >= self.c_points.contents.n_points: msg = "Index out of range" raise IndexError(msg) pnt = self[indx] libvect.Vect_line_delete_point(self.c_points, indx) return pnt
[docs] def delete(self, indx): """Remove the point in the index position. :param indx: the index where add new point :type indx: int >>> line = Line([(0, 0), (1, 1), (2, 2)]) >>> line.delete(-1) >>> line #doctest: +NORMALIZE_WHITESPACE Line([Point(0.000000, 0.000000), Point(1.000000, 1.000000)]) """ if indx < 0: # Handle negative indices indx += self.c_points.contents.n_points if indx >= self.c_points.contents.n_points: msg = "Index out of range" raise IndexError(msg) libvect.Vect_line_delete_point(self.c_points, indx)
[docs] def prune(self): """Remove duplicate points, i.e. zero length segments, using `Vect_line_prune` C function. :: >>> line = Line([(0, 0), (1, 1), (1, 1), (2, 2)]) >>> line.prune() >>> line #doctest: +NORMALIZE_WHITESPACE Line([Point(0.000000, 0.000000), Point(1.000000, 1.000000), Point(2.000000, 2.000000)]) .. """ libvect.Vect_line_prune(self.c_points)
[docs] def prune_thresh(self, threshold): """Remove points in threshold, using the ``Vect_line_prune_thresh`` C function. :param threshold: the threshold value where prune points :type threshold: num >>> line = Line([(0, 0), (1.0, 1.0), (1.2, 0.9), (2, 2)]) >>> line.prune_thresh(0.5) >>> line #doctest: +SKIP +NORMALIZE_WHITESPACE Line([Point(0.000000, 0.000000), Point(1.000000, 1.000000), Point(2.000000, 2.000000)]) .. warning :: prune_thresh is not working yet. """ libvect.Vect_line_prune(self.c_points, ctypes.c_double(threshold))
[docs] def remove(self, pnt): """Delete point at given index and move all points above down, using `Vect_line_delete_point` C function. :param pnt: the point to remove :type pnt: a Point object or a tuple with the coordinates >>> line = Line([(0, 0), (1, 1), (2, 2)]) >>> line.remove((2, 2)) >>> line[-1] #doctest: +NORMALIZE_WHITESPACE Point(1.000000, 1.000000) .. """ for indx, point in enumerate(iter(self)): if pnt == point: libvect.Vect_line_delete_point(self.c_points, indx) return msg = "list.remove(x): x not in list" raise ValueError(msg)
[docs] def reverse(self): """Reverse the order of vertices, using `Vect_line_reverse` C function. :: >>> line = Line([(0, 0), (1, 1), (2, 2)]) >>> line.reverse() >>> line #doctest: +NORMALIZE_WHITESPACE Line([Point(2.000000, 2.000000), Point(1.000000, 1.000000), Point(0.000000, 0.000000)]) .. """ libvect.Vect_line_reverse(self.c_points)
[docs] def segment(self, start, end): """Create line segment. using the ``Vect_line_segment`` C function. :param start: distance from the beginning of the line where the segment starts :type start: float :param end: distance from the beginning of the line where the segment ends :type end: float :: # x (1, 1) # | # |- # | # x--------x (1, 0) # (0, 0) ^ >>> line = Line([(0, 0), (1, 0), (1, 1)]) >>> line.segment(0.5, 1.5) #doctest: +NORMALIZE_WHITESPACE Line([Point(0.500000, 0.000000), Point(1.000000, 0.000000), Point(1.000000, 0.500000)]) """ line = Line() libvect.Vect_line_segment(self.c_points, start, end, line.c_points) return line
[docs] def to_list(self): """Return a list of tuple. :: >>> line = Line([(0, 0), (1, 1), (2, 0), (1, -1)]) >>> line.to_list() [(0.0, 0.0), (1.0, 1.0), (2.0, 0.0), (1.0, -1.0)] .. """ return [pnt.coords() for pnt in iter(self)]
[docs] def to_array(self): """Return an array of coordinates. :: >>> line = Line([(0, 0), (1, 1), (2, 0), (1, -1)]) >>> line.to_array() #doctest: +NORMALIZE_WHITESPACE array([[ 0., 0.], [ 1., 1.], [ 2., 0.], [ 1., -1.]]) .. """ return np.array(self.to_list())
[docs] def to_wkt_p(self): """Return a Well Known Text string of the line. :: >>> line = Line([(0, 0), (1, 1), (1, 2)]) >>> line.to_wkt_p() #doctest: +ELLIPSIS 'LINESTRING(0.000000 0.000000, ..., 1.000000 2.000000)' .. """ return "LINESTRING(%s)" % ", ".join( [" ".join(["%f" % coord for coord in pnt.coords()]) for pnt in iter(self)] )
[docs] def from_wkt(self, wkt): """Create a line reading a WKT string. :param wkt: the WKT string containing the LINESTRING :type wkt: str >>> line = Line() >>> line.from_wkt("LINESTRING(0 0,1 1,1 2)") >>> line #doctest: +NORMALIZE_WHITESPACE Line([Point(0.000000, 0.000000), Point(1.000000, 1.000000), Point(1.000000, 2.000000)]) .. """ match = re.match(r"LINESTRING\((.*)\)", wkt) if match: self.reset() for coord in match.groups()[0].strip().split(","): self.append(tuple(float(e) for e in coord.split(" ")))
[docs] def buffer( self, dist=None, dist_x=None, dist_y=None, angle=0, round_=True, caps=True, tol=0.1, ): """Return the buffer area around the line, using the ``Vect_line_buffer2`` C function. :param dist: the distance around the line :type dist: num :param dist_x: the distance along x :type dist_x: num :param dist_y: the distance along y :type dist_y: num :param angle: the angle between 0x and major axis :type angle: num :param round_: to make corners round :type round_: bool :param tol: fix the maximum distance between theoretical arc and output segments :type tol: float :returns: the buffer as Area object >>> line = Line([(0, 0), (0, 2)]) >>> boundary, centroid, isles = line.buffer(10) >>> boundary #doctest: +ELLIPSIS Line([Point(-10.000000, 0.000000),...Point(-10.000000, 0.000000)]) >>> centroid #doctest: +NORMALIZE_WHITESPACE Point(0.000000, 0.000000) >>> isles [] .. """ if dist is not None: dist_x = dist dist_y = dist elif not dist_x or not dist_y: msg = "buffer expected 1 arguments, got 0" raise TypeError(msg) p_bound = ctypes.pointer(ctypes.pointer(libvect.line_pnts())) pp_isle = ctypes.pointer(ctypes.pointer(ctypes.pointer(libvect.line_pnts()))) n_isles = ctypes.pointer(ctypes.c_int()) libvect.Vect_line_buffer2( self.c_points, dist_x, dist_y, angle, int(round_), int(caps), tol, p_bound, pp_isle, n_isles, ) boundary = Line(c_points=p_bound.contents) isles = [ Line(c_points=pp_isle[i].contents) for i in range(n_isles.contents.value) if pp_isle[i] ] return (boundary, self[0], isles)
[docs] def reset(self): """Reset line, using `Vect_reset_line` C function. :: >>> line = Line([(0, 0), (1, 1), (2, 0), (1, -1)]) >>> len(line) 4 >>> line.reset() >>> len(line) 0 >>> line Line([]) .. """ libvect.Vect_reset_line(self.c_points)
[docs] @mapinfo_must_be_set def nodes(self): """Return the start and end nodes of the line This method requires topology build. return: A tuple of Node objects that represent the start and end point of this line. """ if self.has_topology(): n1 = ctypes.c_int() n2 = ctypes.c_int() libvect.Vect_get_line_nodes( self.c_mapinfo, self.id, ctypes.byref(n1), ctypes.byref(n2) ) return (Node(n1.value, self.c_mapinfo), Node(n2.value, self.c_mapinfo))
[docs]class Node: """Node class for topological analysis of line neighbors. Objects of this class will be returned by the node() function of a Line object. All methods in this class require a proper setup of the Node objects. Hence, the correct id and a valid pointer to a mapinfo object must be provided in the constructions. Otherwise a segfault may happen. """ def __init__(self, v_id, c_mapinfo, **kwords): """Construct a Node object param v_id: The unique node id param c_mapinfo: A valid pointer to the mapinfo object param **kwords: Ignored """ self.id = v_id # vector id self.c_mapinfo = c_mapinfo self._setup() @mapinfo_must_be_set def _setup(self): self.is2D = bool(libvect.Vect_is_3d(self.c_mapinfo) != 1) self.nlines = libvect.Vect_get_node_n_lines(self.c_mapinfo, self.id) def __len__(self): return self.nlines def __iter__(self): return self.ilines() def __repr__(self): return "Node(%d)" % self.id
[docs] @mapinfo_must_be_set def alive(self): """Return True if this node is alive or False if this node is dead or its index is out of range. """ return bool(libvect.Vect_node_alive(self.c_mapinfo, self.id))
[docs] @mapinfo_must_be_set def coords(self): """Return a tuple with the node coordinates.""" x = ctypes.c_double() y = ctypes.c_double() z = ctypes.c_double() libvect.Vect_get_node_coor( self.c_mapinfo, self.id, ctypes.byref(x), ctypes.byref(y), ctypes.byref(z) ) return (x.value, y.value) if self.is2D else (x.value, y.value, z.value)
[docs] def to_wkt(self): """Return a "well know text" (WKT) geometry string. ::""" return "POINT(%s)" % " ".join(["%f" % coord for coord in self.coords()])
[docs] def to_wkb(self): """Return a "well know binary" (WKB) geometry array. :: TODO: Must be implemented """ msg = "Not implemented" raise Exception(msg)
[docs] def ilines(self, only_in=False, only_out=False): """Return a generator with all lines id connected to a node. The line id is negative if line is ending on the node and positive if starting from the node. :param only_in: Return only the lines that are ending in the node :type only_in: bool :param only_out: Return only the lines that are starting in the node :type only_out: bool """ for iline in range(self.nlines): lid = libvect.Vect_get_node_line(self.c_mapinfo, self.id, iline) if (not only_in and lid > 0) or (not only_out and lid < 0): yield lid
[docs] @mapinfo_must_be_set def lines(self, only_in=False, only_out=False): """Return a generator with all lines connected to a node. :param only_in: Return only the lines that are ending in the node :type only_in: bool :param only_out: Return only the lines that are starting in the node :type only_out: bool """ for iline in self.ilines(only_in, only_out): yield Line(v_id=abs(iline), c_mapinfo=self.c_mapinfo)
[docs] @mapinfo_must_be_set def angles(self): """Return a generator with all lines angles in a node.""" for iline in range(self.nlines): yield libvect.Vect_get_node_line_angle(self.c_mapinfo, self.id, iline)
[docs]class Boundary(Line): # geometry type gtype = libvect.GV_BOUNDARY def __init__(self, **kargs): super().__init__(**kargs) v_id = kargs.get("v_id", 0) # not sure what it means that v_id is None v_id = 0 if v_id is None else v_id self.dir = libvect.GV_FORWARD if v_id > 0 else libvect.GV_BACKWARD self.c_left = ctypes.pointer(ctypes.c_int()) self.c_right = ctypes.pointer(ctypes.c_int()) @property def left_area_id(self): """Left side area id, only available after read_area_ids() was called""" return self.c_left.contents.value @property def right_area_id(self): """Right side area id, only available after read_area_ids() was called""" return self.c_right.contents.value def __repr__(self): return "Boundary([%s])" % ", ".join([repr(pnt) for pnt in self.__iter__()]) @mapinfo_must_be_set def _centroid(self, side, idonly=False): if side > 0: v_id = libvect.Vect_get_area_centroid(self.c_mapinfo, side) v_id = v_id or None if idonly: return v_id return Centroid(v_id=v_id, c_mapinfo=self.c_mapinfo)
[docs] def left_centroid(self, idonly=False): """Return left centroid :param idonly: True to return only the cat of feature :type idonly: bool """ return self._centroid(self.c_left.contents.value, idonly)
[docs] def right_centroid(self, idonly=False): """Return right centroid :param idonly: True to return only the cat of feature :type idonly: bool """ return self._centroid(self.c_right.contents.value, idonly)
[docs] @mapinfo_must_be_set def read_area_ids(self): """Read and return left and right area ids of the boundary""" libvect.Vect_get_line_areas(self.c_mapinfo, self.id, self.c_left, self.c_right) return self.c_left.contents.value, self.c_right.contents.value
[docs] def area(self): """Return the area of the polygon. >>> bound = Boundary(points=[(0, 0), (0, 2), (2, 2), (2, 0), ... (0, 0)]) >>> bound.area() 4.0 """ libgis.G_begin_polygon_area_calculations() return libgis.G_area_of_polygon( self.c_points.contents.x, self.c_points.contents.y, self.c_points.contents.n_points, )
[docs]class Centroid(Point): """The Centroid class inherit from the Point class. Centroid contains an attribute with the C Map_info struct, and attributes with the id of the Area. :: >>> centroid = Centroid(x=0, y=10) >>> centroid Centroid(0.000000, 10.000000) >>> from grass.pygrass.vector import VectorTopo >>> test_vect = VectorTopo(test_vector_name) >>> test_vect.open(mode='r') >>> centroid = Centroid(v_id=18, c_mapinfo=test_vect.c_mapinfo) >>> centroid Centroid(3.500000, 3.500000) >>> test_vect.close() .. """ # geometry type gtype = libvect.GV_CENTROID def __init__(self, area_id=None, **kargs): super().__init__(**kargs) self.area_id = area_id if self.id and self.c_mapinfo and self.area_id is None: self.area_id = self._area_id() elif self.c_mapinfo and self.area_id and self.id is None: self.id = self._centroid_id() if self.area_id is not None: self.read() # self.c_pline = ctypes.pointer(libvect.P_line()) if topology else None def __repr__(self): return "Centroid(%s)" % ", ".join(["%f" % co for co in self.coords()]) @mapinfo_must_be_set def _centroid_id(self): """Return the centroid_id, using the c_mapinfo and an area_id attributes of the class, and calling the Vect_get_area_centroid C function, if no centroid_id were found return None""" centroid_id = libvect.Vect_get_area_centroid(self.c_mapinfo, self.area_id) return centroid_id if centroid_id != 0 else None @mapinfo_must_be_set def _area_id(self): """Return the area_id, using the c_mapinfo and an centroid_id attributes of the class, and calling the Vect_centroid_area C function, if no area_id were found return None""" area_id = libvect.Vect_get_centroid_area(self.c_mapinfo, self.id) return area_id if area_id != 0 else None
[docs]class Isle(Geo): """An Isle is an area contained by another area.""" def __init__(self, **kargs): super().__init__(**kargs) # self.area_id = area_id def __repr__(self): return "Isle(%d)" % (self.id)
[docs] @mapinfo_must_be_set def boundaries(self): """Return a list of boundaries""" ilist = Ilist() libvect.Vect_get_isle_boundaries(self.c_mapinfo, self.id, ilist.c_ilist) return ilist
[docs] @mapinfo_must_be_set def bbox(self, bbox=None): """Return bounding box of Isle""" bbox = bbox or Bbox() libvect.Vect_get_isle_box(self.c_mapinfo, self.id, bbox.c_bbox) return bbox
[docs] @mapinfo_must_be_set def points(self): """Return a Line object with the outer ring points""" line = Line() libvect.Vect_get_isle_points(self.c_mapinfo, self.id, line.c_points) return line
[docs] def to_wkt(self): """Return a Well Known Text string of the isle. :: For now the outer ring is returned TODO: Implement inner rings detected from isles """ line = self.points() return "Polygon((%s))" % ", ".join( [" ".join(["%f" % coord for coord in pnt]) for pnt in line.to_list()] )
[docs] def to_wkb(self): """Return a "well know text" (WKB) geometry array. ::""" msg = "Not implemented" raise Exception(msg)
[docs] @mapinfo_must_be_set def points_geos(self): """Return a Line object with the outer ring points""" return libvect.Vect_get_isle_points_geos(self.c_mapinfo, self.id)
[docs] @mapinfo_must_be_set def area_id(self): """Returns area id for isle.""" return libvect.Vect_get_isle_area(self.c_mapinfo, self.id)
[docs] @mapinfo_must_be_set def alive(self): """Check if isle is alive or dead (topology required)""" return bool(libvect.Vect_isle_alive(self.c_mapinfo, self.id))
[docs] @mapinfo_must_be_set def contain_pnt(self, pnt): """Check if point is in area. :param pnt: the point to remove :type pnt: a Point object or a tuple with the coordinates """ bbox = self.bbox() return bool( libvect.Vect_point_in_island( pnt.x, pnt.y, self.c_mapinfo, self.id, bbox.c_bbox.contents ) )
[docs] def area(self): """Return the area value of an Isle""" border = self.points() return libgis.G_area_of_polygon( border.c_points.contents.x, border.c_points.contents.y, border.c_points.contents.n_points, )
[docs] def perimeter(self): """Return the perimeter value of an Isle.""" border = self.points() return libvect.Vect_line_geodesic_length(border.c_points)
[docs]class Isles: def __init__(self, c_mapinfo, area_id=None): self.c_mapinfo = c_mapinfo self.area_id = area_id self._isles_id = None self._isles = None if area_id: self._isles_id = self.isles_ids() self._isles = self.isles() @mapinfo_must_be_set def __len__(self): return libvect.Vect_get_area_num_isles(self.c_mapinfo, self.area_id) def __repr__(self): return "Isles(%r)" % self.area_id def __getitem__(self, key): if self._isles is None: self.isles() return self._isles[key]
[docs] @mapinfo_must_be_set def isles_ids(self): """Return the id of isles""" return [ libvect.Vect_get_area_isle(self.c_mapinfo, self.area_id, i) for i in range(len(self)) ]
[docs] @mapinfo_must_be_set def isles(self): """Return isles""" return [ Isle(v_id=isle_id, c_mapinfo=self.c_mapinfo) for isle_id in self._isles_id ]
[docs]class Area(Geo): """ Vect_build_line_area, Vect_find_area, Vect_get_area_box, Vect_get_area_points_geos, Vect_centroid_area, Vect_get_isle_area, Vect_get_line_areas, Vect_get_num_areas, Vect_get_point_in_area, Vect_isle_find_area, Vect_point_in_area, Vect_point_in_area_outer_ring, Vect_read_area_geos, Vect_remove_small_areas, Vect_select_areas_by_box, Vect_select_areas_by_polygon """ # geometry type gtype = libvect.GV_AREA def __init__(self, **kargs): super().__init__(**kargs) # set the attributes # if self.attrs and self.cat: # self.attrs.cat = self.cat def __repr__(self): return "Area(%d)" % self.id if self.id else "Area( )" @property def cat(self): centroid = self.centroid() return centroid.cat if centroid else None
[docs] @mapinfo_must_be_set def points(self, line=None): """Return a Line object with the outer ring :param line: a Line object to fill with info from points of area :type line: a Line object """ line = Line() if line is None else line libvect.Vect_get_area_points(self.c_mapinfo, self.id, line.c_points) return line
[docs] @mapinfo_must_be_set def centroid(self): """Return the centroid :param centroid: a Centroid object to fill with info from centroid of area :type centroid: a Centroid object """ centroid_id = libvect.Vect_get_area_centroid(self.c_mapinfo, self.id) if centroid_id: return Centroid(v_id=centroid_id, c_mapinfo=self.c_mapinfo, area_id=self.id)
[docs] @mapinfo_must_be_set def num_isles(self): return libvect.Vect_get_area_num_isles(self.c_mapinfo, self.id)
[docs] @mapinfo_must_be_set def isles(self, isles=None): """Return a list of islands located in this area""" if isles is not None: isles.area_id = self.id return isles return Isles(self.c_mapinfo, self.id)
[docs] @mapinfo_must_be_set def area(self): r"""Returns area of area without areas of isles. double Vect_get_area_area (const struct Map_info \*Map, int area) """ return libvect.Vect_get_area_area(self.c_mapinfo, self.id)
[docs] @mapinfo_must_be_set def alive(self): """Check if area is alive or dead (topology required)""" return bool(libvect.Vect_area_alive(self.c_mapinfo, self.id))
[docs] @mapinfo_must_be_set def bbox(self, bbox=None): """Return the Bbox of area :param bbox: a Bbox object to fill with info from bounding box of area :type bbox: a Bbox object """ bbox = bbox or Bbox() libvect.Vect_get_area_box(self.c_mapinfo, self.id, bbox.c_bbox) return bbox
[docs] @mapinfo_must_be_set def buffer( self, dist=None, dist_x=None, dist_y=None, angle=0, round_=True, caps=True, tol=0.1, ): """Return the buffer area around the area, using the ``Vect_area_buffer2`` C function. :param dist: the distance around the area :type dist: num :param dist_x: the distance along x :type dist_x: num :param dist_y: the distance along y :type dist_y: num :param angle: the angle between 0x and major axis :type angle: num :param round_: to make corners round :type round_: bool :param tol: fix the maximum distance between theoretical arc and output segments :type tol: float :returns: the buffer as line, centroid, isles object tuple """ if dist is not None: dist_x = dist dist_y = dist elif not dist_x or not dist_y: msg = "buffer expected 1 arguments, got 0" raise TypeError(msg) p_bound = ctypes.pointer(ctypes.pointer(libvect.line_pnts())) pp_isle = ctypes.pointer(ctypes.pointer(ctypes.pointer(libvect.line_pnts()))) n_isles = ctypes.pointer(ctypes.c_int()) libvect.Vect_area_buffer2( self.c_mapinfo, self.id, dist_x, dist_y, angle, int(round_), int(caps), tol, p_bound, pp_isle, n_isles, ) return ( Line(c_points=p_bound.contents), self.centroid(), [Line(c_points=pp_isle[i].contents) for i in range(n_isles.contents.value)], )
[docs] @mapinfo_must_be_set def boundaries(self, ilist=False): r"""Creates list of boundaries for given area. int Vect_get_area_boundaries(const struct Map_info \*Map, int area, struct ilist \*List) """ ilst = Ilist() libvect.Vect_get_area_boundaries(self.c_mapinfo, self.id, ilst.c_ilist) if ilist: return ilist return [Boundary(v_id=abs(v_id), c_mapinfo=self.c_mapinfo) for v_id in ilst]
[docs] def to_wkt(self): """Return a "well know text" (WKT) area string, this method uses the GEOS implementation in the vector library. :: """ return decode(libvect.Vect_read_area_to_wkt(self.c_mapinfo, self.id))
[docs] def to_wkb(self): """Return a "well know binary" (WKB) area byte array, this method uses the GEOS implementation in the vector library. :: """ size = ctypes.c_size_t() barray = libvect.Vect_read_area_to_wkb( self.c_mapinfo, self.id, ctypes.byref(size) ) return ctypes.string_at(barray, size.value)
[docs] @mapinfo_must_be_set def cats(self, cats=None): """Get area categories. :param cats: a Cats object to fill with info with area categories :type cats: a Cats object """ cats = cats or Cats() libvect.Vect_get_area_cats(self.c_mapinfo, self.id, cats.c_cats) return cats
[docs] def get_first_cat(self): r"""Find FIRST category of given field and area. int Vect_get_area_cat(const struct Map_info \*Map, int area, int field) ..warning: Not implemented """
[docs] @mapinfo_must_be_set def contains_point(self, point, bbox=None): """Check if point is in area. :param point: the point to analyze :type point: a Point object or a tuple with the coordinates :param bbox: the bounding box where run the analysis :type bbox: a Bbox object """ bbox = bbox or self.bbox() return bool( libvect.Vect_point_in_area( point.x, point.y, self.c_mapinfo, self.id, bbox.c_bbox ) )
[docs] @mapinfo_must_be_set def perimeter(self): r"""Calculate area perimeter. :return: double Vect_area_perimeter (const struct line_pnts \*Points) """ border = self.points() return libvect.Vect_line_geodesic_length(border.c_points)
[docs] def read(self): pass
# # Define a dictionary to convert the feature type to name and or object # GV_TYPE = { libvect.GV_POINT: {"label": "point", "obj": Point}, libvect.GV_LINE: {"label": "line", "obj": Line}, libvect.GV_BOUNDARY: {"label": "boundary", "obj": Boundary}, libvect.GV_CENTROID: {"label": "centroid", "obj": Centroid}, libvect.GV_FACE: {"label": "face", "obj": None}, libvect.GV_KERNEL: {"label": "kernel", "obj": None}, libvect.GV_AREA: {"label": "area", "obj": Area}, libvect.GV_VOLUME: {"label": "volume", "obj": None}, } GEOOBJ = { "areas": Area, "dblinks": None, "faces": None, "holes": None, "boundaries": Boundary, "islands": Isle, "kernels": None, "line_points": None, "points": Point, "lines": Line, "nodes": Node, "volumes": None, }
[docs]def c_read_next_line(c_mapinfo, c_points, c_cats): v_id = c_mapinfo.contents.next_line v_id = v_id if v_id != 0 else None ftype = libvect.Vect_read_next_line(c_mapinfo, c_points, c_cats) if ftype == -2: raise StopIteration if ftype == -1: raise return ftype, v_id, c_points, c_cats
[docs]def read_next_line( c_mapinfo, table=None, writeable=False, c_points=None, c_cats=None, is2D=True ): """Return the next geometry feature of a vector map.""" # Take care of good memory management free_points = False if c_points is None: free_points = True free_cats = False if c_cats is None: free_cats = True c_points = c_points or ctypes.pointer(libvect.line_pnts()) c_cats = c_cats or ctypes.pointer(libvect.line_cats()) ftype, v_id, c_points, c_cats = c_read_next_line(c_mapinfo, c_points, c_cats) return GV_TYPE[ftype]["obj"]( v_id=v_id, c_mapinfo=c_mapinfo, c_points=c_points, c_cats=c_cats, table=table, writeable=writeable, is2D=is2D, free_points=free_points, free_cats=free_cats, )
[docs]def c_read_line(feature_id, c_mapinfo, c_points, c_cats): nmax = libvect.Vect_get_num_lines(c_mapinfo) if feature_id < 0: # Handle negative indices feature_id += nmax + 1 if feature_id > nmax: msg = "Index out of range" raise IndexError(msg) if feature_id > 0: ftype = libvect.Vect_read_line(c_mapinfo, c_points, c_cats, feature_id) return feature_id, ftype, c_points, c_cats raise ValueError("The index must be >0, %r given." % feature_id)
[docs]def read_line( feature_id, c_mapinfo, table=None, writeable=False, c_points=None, c_cats=None, is2D=True, ): """Return a geometry object given the feature id and the c_mapinfo.""" # Take care of good memory management free_points = False if c_points is None: free_points = True free_cats = False if c_cats is None: free_cats = True c_points = c_points or ctypes.pointer(libvect.line_pnts()) c_cats = c_cats or ctypes.pointer(libvect.line_cats()) feature_id, ftype, c_points, c_cats = c_read_line( feature_id, c_mapinfo, c_points, c_cats ) if GV_TYPE[ftype]["obj"] is not None: return GV_TYPE[ftype]["obj"]( v_id=feature_id, c_mapinfo=c_mapinfo, c_points=c_points, c_cats=c_cats, table=table, writeable=writeable, is2D=is2D, free_points=free_points, free_cats=free_cats, )
if __name__ == "__main__": import doctest from grass.pygrass import utils utils.create_test_vector_map(test_vector_name) doctest.testmod() from grass.pygrass.utils import get_mapset_vector from grass.script.core import run_command mset = get_mapset_vector(test_vector_name, mapset="") if mset: # Remove the generated vector map, if exists run_command("g.remove", flags="f", type="vector", name=test_vector_name)