NAME
i.pr.features_selection - Module for feature selection. i.pr: Pattern Recognition environment for image processing. Includes kNN, Decision Tree and SVM classification techniques. Also includes cross-validation and bagging methods for model validation.
KEYWORDS
imagery, image processing, pattern recognition
SYNOPSIS
i.pr.features_selection
i.pr.features_selection help
i.pr.features_selection [-w] features=string output=string [npc=integer] [svm_kernel=string] [svm_kp=float] [svm_C=float] [svm_cost=float] fs_type=string [fs_rfe=integer] [svm_tol=float] [svm_eps=float] [svm_maxloops=integer] [svm_verbose=integer] [--verbose] [--quiet]
Flags:
- -w
- Produce file containing weights at each step.
- --verbose
- Verbose module output
- --quiet
- Quiet module output
Parameters:
- features=string
- Input file containing the features (output of i.pr_features).
- output=string
- Name of the output file containing the selected features.
- npc=integer
- Number of the principal components to be used for the model development.
If not set all the principal components will be used.
Ignored if features does not contain principal components model.
- svm_kernel=string
- For svm: type of employed kernel.
- Options: gaussian,linear
- Default: linear
- svm_kp=float
- For svm: kernel parameter (Required parameter if you are using gaussian kernel).
- svm_C=float
- For svm: optimization parameter (Required parameter).
- svm_cost=float
- Cost parameter for the implementation of cost-sensitive procedure(w in [-1,1]).
w>0 results higher weight on examples of class 1.
w<0 results higher weight on examples of class -1.
w=0 corresponds to standard SVM.
- Default: 0.0
- fs_type=string
- Feature selection method.
- Options: rfe,e_rfe,1_rfe,sqrt_rfe
- fs_rfe=integer
- If you are using the e_rfe method, you have to choose the number of feartures
for the classical rfe method to start (fs_rfe>1).
- svm_tol=float
- For svm: tollerance parameter.
- Default: 0.001
- svm_eps=float
- For svm: epsilon.
- Default: 0.001
- svm_maxloops=integer
- For svm: maximum number of optimization steps.
- Default: 1000
- svm_verbose=integer
- For svm: if it is set to 1 the number of loops will be printed.
- Options: 0,1
- Default: 0
Main index - imagery index - Full index
© 2003-2016 GRASS Development Team