GRASS GIS logo

Source code for pygrass.modules.interface.module

# -*- coding: utf-8 -*-
from __future__ import (nested_scopes, generators, division, absolute_import,
                        with_statement, print_function, unicode_literals)
import sys
from multiprocessing import cpu_count
import time
from xml.etree.ElementTree import fromstring

from grass.exceptions import CalledModuleError, GrassError, ParameterError
from grass.script.core import Popen, PIPE
from .docstring import docstring_property
from .parameter import Parameter
from .flag import Flag
from .typedict import TypeDict
from .read import GETFROMTAG, DOC
from .env import G_debug


if sys.version_info[0] == 2:
    from itertools import izip_longest as zip_longest
else:
    from itertools import zip_longest


def _get_bash(self, *args, **kargs):
    return self.get_bash()


[docs]class ParallelModuleQueue(object): """This class is designed to run an arbitrary number of pygrass Module processes in parallel. Objects of type grass.pygrass.modules.Module can be put into the queue using put() method. When the queue is full with the maximum number of parallel processes it will wait for all processes to finish, sets the stdout and stderr of the Module object and removes it from the queue when its finished. To finish the queue before the maximum number of parallel processes was reached call wait() . This class will raise a GrassError in case a Module process exits with a return code other than 0. Usage: Check with a queue size of 3 and 5 processes >>> import copy >>> from grass.pygrass.modules import Module, ParallelModuleQueue >>> mapcalc_list = [] Setting run_ to False is important, otherwise a parallel processing is not possible >>> mapcalc = Module("r.mapcalc", overwrite=True, run_=False) >>> queue = ParallelModuleQueue(nprocs=3) >>> for i in xrange(5): ... new_mapcalc = copy.deepcopy(mapcalc) ... mapcalc_list.append(new_mapcalc) ... m = new_mapcalc(expression="test_pygrass_%i = %i"%(i, i)) ... queue.put(m) >>> queue.wait() >>> queue.get_num_run_procs() 0 >>> queue.get_max_num_procs() 3 >>> for mapcalc in mapcalc_list: ... print(mapcalc.popen.returncode) 0 0 0 0 0 Check with a queue size of 8 and 5 processes >>> queue = ParallelModuleQueue(nprocs=8) >>> mapcalc_list = [] >>> for i in xrange(5): ... new_mapcalc = copy.deepcopy(mapcalc) ... mapcalc_list.append(new_mapcalc) ... m = new_mapcalc(expression="test_pygrass_%i = %i"%(i, i)) ... queue.put(m) >>> queue.wait() >>> queue.get_num_run_procs() 0 >>> queue.get_max_num_procs() 8 >>> for mapcalc in mapcalc_list: ... print(mapcalc.popen.returncode) 0 0 0 0 0 Check with a queue size of 8 and 4 processes >>> queue = ParallelModuleQueue(nprocs=8) >>> mapcalc_list = [] >>> new_mapcalc = copy.deepcopy(mapcalc) >>> mapcalc_list.append(new_mapcalc) >>> m = new_mapcalc(expression="test_pygrass_1 =1") >>> queue.put(m) >>> queue.get_num_run_procs() 1 >>> new_mapcalc = copy.deepcopy(mapcalc) >>> mapcalc_list.append(new_mapcalc) >>> m = new_mapcalc(expression="test_pygrass_2 =2") >>> queue.put(m) >>> queue.get_num_run_procs() 2 >>> new_mapcalc = copy.deepcopy(mapcalc) >>> mapcalc_list.append(new_mapcalc) >>> m = new_mapcalc(expression="test_pygrass_3 =3") >>> queue.put(m) >>> queue.get_num_run_procs() 3 >>> new_mapcalc = copy.deepcopy(mapcalc) >>> mapcalc_list.append(new_mapcalc) >>> m = new_mapcalc(expression="test_pygrass_4 =4") >>> queue.put(m) >>> queue.get_num_run_procs() 4 >>> queue.wait() >>> queue.get_num_run_procs() 0 >>> queue.get_max_num_procs() 8 >>> for mapcalc in mapcalc_list: ... print(mapcalc.popen.returncode) 0 0 0 0 Check with a queue size of 3 and 4 processes >>> queue = ParallelModuleQueue(nprocs=3) >>> mapcalc_list = [] >>> new_mapcalc = copy.deepcopy(mapcalc) >>> mapcalc_list.append(new_mapcalc) >>> m = new_mapcalc(expression="test_pygrass_1 =1") >>> queue.put(m) >>> queue.get_num_run_procs() 1 >>> new_mapcalc = copy.deepcopy(mapcalc) >>> mapcalc_list.append(new_mapcalc) >>> m = new_mapcalc(expression="test_pygrass_2 =2") >>> queue.put(m) >>> queue.get_num_run_procs() 2 >>> new_mapcalc = copy.deepcopy(mapcalc) >>> mapcalc_list.append(new_mapcalc) >>> m = new_mapcalc(expression="test_pygrass_3 =3") >>> queue.put(m) # Now it will wait until all procs finish and set the counter back to 0 >>> queue.get_num_run_procs() 0 >>> new_mapcalc = copy.deepcopy(mapcalc) >>> mapcalc_list.append(new_mapcalc) >>> m = new_mapcalc(expression="test_pygrass_%i = %i"%(i, i)) >>> queue.put(m) >>> queue.get_num_run_procs() 1 >>> queue.wait() >>> queue.get_num_run_procs() 0 >>> queue.get_max_num_procs() 3 >>> for mapcalc in mapcalc_list: ... print(mapcalc.popen.returncode) 0 0 0 0 """ def __init__(self, nprocs=1): """Constructor :param nprocs: The maximum number of Module processes that can be run in parallel, defualt is 1, if None then use all the available CPUs. :type nprocs: int """ nprocs = int(nprocs) if nprocs else cpu_count() self._num_procs = nprocs self._list = nprocs * [None] self._proc_count = 0
[docs] def put(self, module): """Put the next Module object in the queue To run the Module objects in parallel the run\_ and finish\_ options of the Module must be set to False. :param module: a preconfigured Module object with run\_ and finish\_ set to False :type module: Module object """ self._list[self._proc_count] = module # Force that finish is False, otherwise the execution # will not be parallel self._list[self._proc_count].finish_ = False self._list[self._proc_count].run() self._proc_count += 1 if self._proc_count == self._num_procs: self.wait()
[docs] def get(self, num): """Get a Module object from the queue :param num: the number of the object in queue :type num: int :returns: the Module object or None if num is not in the queue """ if num < self._num_procs: return self._list[num] return None
[docs] def get_num_run_procs(self): """Get the number of Module processes that are in the queue running or finished :returns: the number fo Module processes running/finished in the queue """ return self._proc_count
[docs] def get_max_num_procs(self): """Return the maximum number of parallel Module processes :returns: the maximum number of parallel Module processes """ return self._num_procs
[docs] def set_max_num_procs(self, nprocs): """Set the maximum number of Module processes that should run in parallel :param nprocs: The maximum number of Module processes that can be run in parallel :type nprocs: int """ self._num_procs = int(nprocs) self.wait()
[docs] def wait(self): """Wait for all Module processes that are in the list to finish and set the modules stdout and stderr output options """ for proc in self._list: if proc: stdout, stderr = proc.popen.communicate(input=proc.stdin) proc.outputs['stdout'].value = stdout if stdout else '' proc.outputs['stderr'].value = stderr if stderr else '' if proc.popen.returncode != 0: GrassError(("Error running module %s") % (proc.name)) self._list = self._num_procs * [None] self._proc_count = 0
[docs]class Module(object): """This class is design to wrap/run/interact with the GRASS modules. The class during the init phase read the XML description generate using the ``--interface-description`` in order to understand which parameters are required which optionals. :: >>> from grass.pygrass.modules import Module >>> from subprocess import PIPE >>> import copy >>> region = Module("g.region") >>> region.flags.p = True # set flags >>> region.flags.u = True >>> region.flags["3"].value = True # set numeric flags >>> region.get_bash() u'g.region -p -3 -u' >>> new_region = copy.deepcopy(region) >>> new_region.inputs.res = "10" >>> new_region.get_bash() u'g.region res=10 -p -3 -u' >>> neighbors = Module("r.neighbors") >>> neighbors.inputs.input = "mapA" >>> neighbors.outputs.output = "mapB" >>> neighbors.inputs.size = 5 >>> neighbors.inputs.quantile = 0.5 >>> neighbors.get_bash() u'r.neighbors input=mapA method=average size=5 quantile=0.5 output=mapB' >>> new_neighbors1 = copy.deepcopy(neighbors) >>> new_neighbors1.inputs.input = "mapD" >>> new_neighbors1.inputs.size = 3 >>> new_neighbors1.inputs.quantile = 0.5 >>> new_neighbors1.get_bash() u'r.neighbors input=mapD method=average size=3 quantile=0.5 output=mapB' >>> new_neighbors2 = copy.deepcopy(neighbors) >>> new_neighbors2(input="mapD", size=3, run_=False) Module('r.neighbors') >>> new_neighbors2.get_bash() u'r.neighbors input=mapD method=average size=3 quantile=0.5 output=mapB' >>> neighbors = Module("r.neighbors") >>> neighbors.get_bash() u'r.neighbors method=average size=3' >>> new_neighbors3 = copy.deepcopy(neighbors) >>> new_neighbors3(input="mapA", size=3, output="mapB", run_=False) Module('r.neighbors') >>> new_neighbors3.get_bash() u'r.neighbors input=mapA method=average size=3 output=mapB' >>> mapcalc = Module("r.mapcalc", expression="test_a = 1", ... overwrite=True, run_=False) >>> mapcalc.run() Module('r.mapcalc') >>> mapcalc.popen.returncode 0 >>> colors = Module("r.colors", map="test_a", rules="-", ... run_=False, stdout_=PIPE, ... stderr_=PIPE, stdin_="1 red") >>> colors.run() Module('r.colors') >>> colors.popen.returncode 0 >>> colors.inputs["stdin"].value u'1 red' >>> colors.outputs["stdout"].value u'' >>> colors.outputs["stderr"].value.strip() "Color table for raster map <test_a> set to 'rules'" >>> colors = Module("r.colors", map="test_a", rules="-", ... run_=False, finish_=False, stdin_=PIPE) >>> colors.run() Module('r.colors') >>> stdout, stderr = colors.popen.communicate(input="1 red") >>> colors.popen.returncode 0 >>> stdout >>> stderr >>> colors = Module("r.colors", map="test_a", rules="-", ... run_=False, finish_=False, ... stdin_=PIPE, stderr_=PIPE) >>> colors.run() Module('r.colors') >>> stdout, stderr = colors.popen.communicate(input="1 red") >>> colors.popen.returncode 0 >>> stdout >>> stderr.strip() "Color table for raster map <test_a> set to 'rules'" Run a second time >>> colors.run() Module('r.colors') >>> stdout, stderr = colors.popen.communicate(input="1 blue") >>> colors.popen.returncode 0 >>> stdout >>> stderr.strip() "Color table for raster map <test_a> set to 'rules'" Multiple run test >>> colors = Module("r.colors", map="test_a", ... color="ryb", run_=False) >>> colors.run() Module('r.colors') >>> colors(color="gyr") Module('r.colors') >>> colors.run() Module('r.colors') >>> colors(color="ryg") Module('r.colors') >>> colors(stderr_=PIPE) Module('r.colors') >>> colors.run() Module('r.colors') >>> print(colors.outputs["stderr"].value.strip()) Color table for raster map <test_a> set to 'ryg' >>> colors(color="byg") Module('r.colors') >>> colors(stdout_=PIPE) Module('r.colors') >>> colors.run() Module('r.colors') >>> print(colors.outputs["stderr"].value.strip()) Color table for raster map <test_a> set to 'byg' Often in the Module class you can find ``*args`` and ``kwargs`` annotation in methods, like in the __call__ method. Python allow developers to not specify all the arguments and keyword arguments of a method or function. :: def f(*args): for arg in args: print arg therefore if we call the function like: >>> f('grass', 'gis', 'modules') # doctest: +SKIP grass gis modules or we can define a new list: >>> words = ['grass', 'gis', 'modules'] # doctest: +SKIP >>> f(*words) # doctest: +SKIP grass gis modules we can do the same with keyword arguments, rewrite the above function: :: def f(*args, **kargs): for arg in args: print arg for key, value in kargs.items(): print "%s = %r" % (key, value) now we can use the new function, with: >>> f('grass', 'gis', 'modules', os = 'linux', language = 'python') ... # doctest: +SKIP grass gis modules os = 'linux' language = 'python' or, as before we can, define a dictionary and give the dictionary to the function, like: >>> keywords = {'os' : 'linux', 'language' : 'python'} # doctest: +SKIP >>> f(*words, **keywords) # doctest: +SKIP grass gis modules os = 'linux' language = 'python' In the Module class we heavily use this language feature to pass arguments and keyword arguments to the grass module. """ def __init__(self, cmd, *args, **kargs): if isinstance(cmd, unicode): self.name = str(cmd) elif isinstance(cmd, str): self.name = cmd else: raise GrassError("Problem initializing the module {s}".format(s=cmd)) try: # call the command with --interface-description get_cmd_xml = Popen([cmd, "--interface-description"], stdout=PIPE) except OSError as e: print("OSError error({0}): {1}".format(e.errno, e.strerror)) str_err = "Error running: `%s --interface-description`." raise GrassError(str_err % self.name) # get the xml of the module self.xml = get_cmd_xml.communicate()[0] # transform and parse the xml into an Element class: # http://docs.python.org/library/xml.etree.elementtree.html tree = fromstring(self.xml) for e in tree: if e.tag not in ('parameter', 'flag'): self.__setattr__(e.tag, GETFROMTAG[e.tag](e)) # # extract parameters from the xml # self.params_list = [Parameter(p) for p in tree.findall("parameter")] self.inputs = TypeDict(Parameter) self.outputs = TypeDict(Parameter) self.required = [] # Insert parameters into input/output and required for par in self.params_list: if par.input: self.inputs[par.name] = par else: self.outputs[par.name] = par if par.required: self.required.append(par.name) # # extract flags from the xml # flags_list = [Flag(f) for f in tree.findall("flag")] self.flags = TypeDict(Flag) for flag in flags_list: self.flags[flag.name] = flag # # Add new attributes to the class # self.run_ = True self.finish_ = True self.check_ = True self.env_ = None self.stdin_ = None self.stdin = None self.stdout_ = None self.stderr_ = None diz = {'name': 'stdin', 'required': False, 'multiple': False, 'type': 'all', 'value': None} self.inputs['stdin'] = Parameter(diz=diz) diz['name'] = 'stdout' self.outputs['stdout'] = Parameter(diz=diz) diz['name'] = 'stderr' self.outputs['stderr'] = Parameter(diz=diz) self.popen = None self.time = None if args or kargs: self.__call__(*args, **kargs) self.__call__.__func__.__doc__ = self.__doc__ def __call__(self, *args, **kargs): """Set module parameters to the class and, if run_ is True execute the module, therefore valid parameters are all the module parameters plus some extra parameters that are: run_, stdin_, stdout_, stderr_, env_ and finish_. """ if not args and not kargs: self.run() return self # # check for extra kargs, set attribute and remove from dictionary # if 'flags' in kargs: for flg in kargs['flags']: self.flags[flg].value = True del(kargs['flags']) # set attributs for key in ('run_', 'env_', 'finish_', 'stdout_', 'stderr_', 'check_'): if key in kargs: setattr(self, key, kargs.pop(key)) # set inputs for key in ('stdin_', ): if key in kargs: self.inputs[key[:-1]].value = kargs.pop(key) # # set/update args # for param, arg in zip(self.params_list, args): param.value = arg for key, val in kargs.items(): if key in self.inputs: self.inputs[key].value = val elif key in self.outputs: self.outputs[key].value = val elif key in self.flags: # we need to add this, because some parameters (overwrite, # verbose and quiet) work like parameters self.flags[key].value = val else: raise ParameterError('%s is not a valid parameter.' % key) # # check if execute # if self.run_: # # check reqire parameters # if self.check_: self.check() return self.run() return self
[docs] def get_bash(self): """Return a BASH rapresentation of the Module.""" return ' '.join(self.make_cmd())
[docs] def get_python(self): """Return a Python rapresentation of the Module.""" prefix = self.name.split('.')[0] name = '_'.join(self.name.split('.')[1:]) params = ', '.join([par.get_python() for par in self.params_list if par.get_python() != '']) flags = ''.join([flg.get_python() for flg in self.flags.values() if not flg.special and flg.get_python() != '']) special = ', '.join([flg.get_python() for flg in self.flags.values() if flg.special and flg.get_python() != '']) # pre name par flg special if flags and special: return "%s.%s(%s, flags=%r, %s)" % (prefix, name, params, flags, special) elif flags: return "%s.%s(%s, flags=%r)" % (prefix, name, params, flags) elif special: return "%s.%s(%s, %s)" % (prefix, name, params, special) else: return "%s.%s(%s)" % (prefix, name, params)
def __str__(self): """Return the command string that can be executed in a shell""" return ' '.join(self.make_cmd()) def __repr__(self): return "Module(%r)" % self.name @docstring_property(__doc__) def __doc__(self): """{cmd_name}({cmd_params}) """ head = DOC['head'].format(cmd_name=self.name, cmd_params=('\n' + # go to a new line # give space under the function name (' ' * (len(self.name) + 1))).join([', '.join( # transform each parameter in string [str(param) for param in line if param is not None]) # make a list of parameters with only 3 param per line for line in zip_longest(*[iter(self.params_list)] * 3)]),) params = '\n'.join([par.__doc__ for par in self.params_list]) flags = self.flags.__doc__ return '\n'.join([head, params, DOC['flag_head'], flags, DOC['foot']])
[docs] def check(self): """Check the correctness of the provide parameters""" required = True for flg in self.flags.values(): if flg and flg.suppress_required: required = False if required: for k in self.required: if ((k in self.inputs and self.inputs[k].value is None) or (k in self.outputs and self.outputs[k].value is None)): msg = "Required parameter <%s> not set." raise ParameterError(msg % k)
[docs] def get_dict(self): """Return a dictionary that includes the name, all valid inputs, outputs and flags """ dic = {} dic['name'] = self.name dic['inputs'] = [(k, v.value) for k, v in self.inputs.items() if v.value] dic['outputs'] = [(k, v.value) for k, v in self.outputs.items() if v.value] dic['flags'] = [flg for flg in self.flags if self.flags[flg].value] return dic
[docs] def make_cmd(self): """Create the command string that can be executed in a shell :returns: the command string """ skip = ['stdin', 'stdout', 'stderr'] args = [self.name, ] for key in self.inputs: if key not in skip and self.inputs[key].value is not None and self.inputs[key].value != '': args.append(self.inputs[key].get_bash()) for key in self.outputs: if key not in skip and self.outputs[key].value is not None and self.outputs[key].value != '': args.append(self.outputs[key].get_bash()) for flg in self.flags: if self.flags[flg].value: args.append(str(self.flags[flg])) return args
[docs] def run(self): """Run the module :param node: :type node: This function will wait for the process to terminate in case finish_==True and sets up stdout and stderr. If finish_==False this function will return after starting the process. Use self.popen.communicate() of self.popen.wait() to wait for the process termination. The handling of stdout and stderr must then be done outside of this function. """ G_debug(1, self.get_bash()) if self.inputs['stdin'].value: self.stdin = self.inputs['stdin'].value self.stdin_ = PIPE cmd = self.make_cmd() start = time.time() self.popen = Popen(cmd, stdin=self.stdin_, stdout=self.stdout_, stderr=self.stderr_, env=self.env_) if self.finish_: stdout, stderr = self.popen.communicate(input=self.stdin) self.outputs['stdout'].value = stdout if stdout else '' self.outputs['stderr'].value = stderr if stderr else '' self.time = time.time() - start if self.popen.poll(): raise CalledModuleError(returncode=self.popen.returncode, code=self.get_bash(), module=self.name, errors=stderr) return self ###############################################################################
if __name__ == "__main__": import doctest doctest.testmod()

Help Index | Topics Index | Keywords Index | Full Index

© 2003-2018 GRASS Development Team, GRASS GIS 7.0.7svn Reference Manual