"""
Depricazed unittests
(C) 2008-2011 by the GRASS Development Team
This program is free software under the GNU General Public
License (>=v2). Read the file COPYING that comes with GRASS
for details.
:authors: Soeren Gebbert
"""
from __future__ import print_function
import copy
from datetime import datetime
import grass.script.core as core
from .temporal_granularity import *
from .datetime_math import *
from .space_time_datasets import *
import grass.lib.vector as vector
import grass.lib.rtree as rtree
import grass.lib.gis as gis
from ctypes import *
# Uncomment this to detect the error
core.set_raise_on_error(True)
###############################################################################
[docs]def test_increment_datetime_by_string():
# First test
print("# Test 1")
dt = datetime(2001, 9, 1, 0, 0, 0)
string = "60 seconds, 4 minutes, 12 hours, 10 days, 1 weeks, 5 months, 1 years"
dt1 = datetime(2003, 2, 18, 12, 5, 0)
dt2 = increment_datetime_by_string(dt, string)
print(dt)
print(dt2)
delta = dt1 - dt2
if delta.days != 0 or delta.seconds != 0:
core.fatal("increment computation is wrong %s" % (delta))
# Second test
print("# Test 2")
dt = datetime(2001, 11, 1, 0, 0, 0)
string = "1 months"
dt1 = datetime(2001, 12, 1)
dt2 = increment_datetime_by_string(dt, string)
print(dt)
print(dt2)
delta = dt1 - dt2
if delta.days != 0 or delta.seconds != 0:
core.fatal("increment computation is wrong %s" % (delta))
# Third test
print("# Test 3")
dt = datetime(2001, 11, 1, 0, 0, 0)
string = "13 months"
dt1 = datetime(2002, 12, 1)
dt2 = increment_datetime_by_string(dt, string)
print(dt)
print(dt2)
delta = dt1 - dt2
if delta.days != 0 or delta.seconds != 0:
core.fatal("increment computation is wrong %s" % (delta))
# 4. test
print("# Test 4")
dt = datetime(2001, 1, 1, 0, 0, 0)
string = "72 months"
dt1 = datetime(2007, 1, 1)
dt2 = increment_datetime_by_string(dt, string)
print(dt)
print(dt2)
delta = dt1 - dt2
if delta.days != 0 or delta.seconds != 0:
core.fatal("increment computation is wrong %s" % (delta))
###############################################################################
[docs]def test_adjust_datetime_to_granularity():
# First test
print("Test 1")
dt = datetime(2001, 8, 8, 12, 30, 30)
result = adjust_datetime_to_granularity(dt, "5 seconds")
correct = datetime(2001, 8, 8, 12, 30, 30)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# Second test
print("Test 2")
result = adjust_datetime_to_granularity(dt, "20 minutes")
correct = datetime(2001, 8, 8, 12, 30, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# Third test
print("Test 2")
result = adjust_datetime_to_granularity(dt, "20 minutes")
correct = datetime(2001, 8, 8, 12, 30, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# 4. test
print("Test 4")
result = adjust_datetime_to_granularity(dt, "3 hours")
correct = datetime(2001, 8, 8, 12, 00, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# 5. test
print("Test 5")
result = adjust_datetime_to_granularity(dt, "5 days")
correct = datetime(2001, 8, 8, 00, 00, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# 6. test
print("Test 6")
result = adjust_datetime_to_granularity(dt, "2 weeks")
correct = datetime(2001, 8, 6, 00, 00, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# 7. test
print("Test 7")
result = adjust_datetime_to_granularity(dt, "6 months")
correct = datetime(2001, 8, 1, 00, 00, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# 8. test
print("Test 8")
result = adjust_datetime_to_granularity(dt, "2 years")
correct = datetime(2001, 1, 1, 00, 00, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# 9. test
print("Test 9")
result = adjust_datetime_to_granularity(
dt, "2 years, 3 months, 5 days, 3 hours, 3 minutes, 2 seconds")
correct = datetime(2001, 8, 8, 12, 30, 30)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# 10. test
print("Test 10")
result = adjust_datetime_to_granularity(dt, "3 months, 5 days, 3 minutes")
correct = datetime(2001, 8, 8, 12, 30, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
# 11. test
print("Test 11")
result = adjust_datetime_to_granularity(dt, "3 weeks, 5 days")
correct = datetime(2001, 8, 8, 00, 00, 00)
delta = correct - result
if delta.days != 0 or delta.seconds != 0:
core.fatal("Granularity adjustment computation is wrong %s" % (delta))
###############################################################################
[docs]def test_compute_datetime_delta():
print("Test 1")
start = datetime(2001, 1, 1, 00, 00, 00)
end = datetime(2001, 1, 1, 00, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["second"]
correct = 0
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 2")
start = datetime(2001, 1, 1, 00, 00, 14)
end = datetime(2001, 1, 1, 00, 00, 44)
comp = compute_datetime_delta(start, end)
result = comp["second"]
correct = 30
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 3")
start = datetime(2001, 1, 1, 00, 00, 44)
end = datetime(2001, 1, 1, 00, 01, 14)
comp = compute_datetime_delta(start, end)
result = comp["second"]
correct = 30
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 4")
start = datetime(2001, 1, 1, 00, 00, 30)
end = datetime(2001, 1, 1, 00, 05, 30)
comp = compute_datetime_delta(start, end)
result = comp["second"]
correct = 300
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 5")
start = datetime(2001, 1, 1, 00, 00, 00)
end = datetime(2001, 1, 1, 00, 01, 00)
comp = compute_datetime_delta(start, end)
result = comp["minute"]
correct = 1
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 6")
start = datetime(2011, 10, 31, 00, 45, 00)
end = datetime(2011, 10, 31, 01, 45, 00)
comp = compute_datetime_delta(start, end)
result = comp["minute"]
correct = 60
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 7")
start = datetime(2011, 10, 31, 00, 45, 00)
end = datetime(2011, 10, 31, 01, 15, 00)
comp = compute_datetime_delta(start, end)
result = comp["minute"]
correct = 30
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 8")
start = datetime(2011, 10, 31, 00, 45, 00)
end = datetime(2011, 10, 31, 12, 15, 00)
comp = compute_datetime_delta(start, end)
result = comp["minute"]
correct = 690
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 9")
start = datetime(2011, 10, 31, 00, 00, 00)
end = datetime(2011, 10, 31, 01, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["hour"]
correct = 1
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 10")
start = datetime(2011, 10, 31, 00, 00, 00)
end = datetime(2011, 11, 01, 01, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["hour"]
correct = 25
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 11")
start = datetime(2011, 10, 31, 12, 00, 00)
end = datetime(2011, 11, 01, 06, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["hour"]
correct = 18
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 12")
start = datetime(2011, 11, 01, 00, 00, 00)
end = datetime(2011, 12, 01, 01, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["hour"]
correct = 30 * 24 + 1
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 13")
start = datetime(2011, 11, 01, 00, 00, 00)
end = datetime(2011, 11, 05, 00, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["day"]
correct = 4
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 14")
start = datetime(2011, 10, 06, 00, 00, 00)
end = datetime(2011, 11, 05, 00, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["day"]
correct = 30
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 15")
start = datetime(2011, 12, 02, 00, 00, 00)
end = datetime(2012, 01, 01, 00, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["day"]
correct = 30
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 16")
start = datetime(2011, 01, 01, 00, 00, 00)
end = datetime(2011, 02, 01, 00, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["month"]
correct = 1
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 17")
start = datetime(2011, 12, 01, 00, 00, 00)
end = datetime(2012, 01, 01, 00, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["month"]
correct = 1
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 18")
start = datetime(2011, 12, 01, 00, 00, 00)
end = datetime(2012, 06, 01, 00, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["month"]
correct = 6
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 19")
start = datetime(2011, 06, 01, 00, 00, 00)
end = datetime(2021, 06, 01, 00, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["year"]
correct = 10
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 20")
start = datetime(2011, 06, 01, 00, 00, 00)
end = datetime(2012, 06, 01, 12, 00, 00)
comp = compute_datetime_delta(start, end)
result = comp["hour"]
d = end - start
correct = 12 + d.days * 24
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 21")
start = datetime(2011, 06, 01, 00, 00, 00)
end = datetime(2012, 06, 01, 12, 30, 00)
comp = compute_datetime_delta(start, end)
result = comp["minute"]
d = end - start
correct = d.days * 24 * 60 + 12 * 60 + 30
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 22")
start = datetime(2011, 06, 01, 00, 00, 00)
end = datetime(2012, 06, 01, 12, 00, 05)
comp = compute_datetime_delta(start, end)
result = comp["second"]
d = end - start
correct = 5 + 60 * 60 * 12 + d.days * 24 * 60 * 60
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 23")
start = datetime(2011, 06, 01, 00, 00, 00)
end = datetime(2012, 06, 01, 00, 30, 00)
comp = compute_datetime_delta(start, end)
result = comp["minute"]
d = end - start
correct = 30 + d.days * 24 * 60
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
print("Test 24")
start = datetime(2011, 06, 01, 00, 00, 00)
end = datetime(2012, 06, 01, 00, 00, 05)
comp = compute_datetime_delta(start, end)
result = comp["second"]
d = end - start
correct = 5 + d.days * 24 * 60 * 60
delta = correct - result
if delta != 0:
core.fatal("Compute datetime delta is wrong %s" % (delta))
[docs]def test_compute_absolute_time_granularity():
# First we test intervals
print("Test 1")
maps = []
a = datetime(2001, 1, 1)
increment = "1 year"
for i in range(10):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 2")
maps = []
a = datetime(2001, 1, 1)
increment = "3 years"
for i in range(10):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 3")
maps = []
a = datetime(2001, 5, 1)
increment = "1 month"
for i in range(20):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 4")
maps = []
a = datetime(2001, 1, 1)
increment = "3 months"
for i in range(20):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 3")
maps = []
a = datetime(2001, 1, 1)
increment = "1 day"
for i in range(6):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 4")
maps = []
a = datetime(2001, 1, 14)
increment = "14 days"
for i in range(6):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 5")
maps = []
a = datetime(2001, 3, 1)
increment = "1 month, 4 days"
for i in range(20):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
increment = "1 day"
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 6")
maps = []
a = datetime(2001, 2, 11)
increment = "1 days, 1 hours"
for i in range(20):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
increment = "25 hours"
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 7")
maps = []
a = datetime(2001, 6, 12)
increment = "6 hours"
for i in range(20):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 8")
maps = []
a = datetime(2001, 1, 1)
increment = "20 minutes"
for i in range(20):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 9")
maps = []
a = datetime(2001, 1, 1)
increment = "5 hours, 25 minutes"
for i in range(20):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
increment = "325 minutes"
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 10")
maps = []
a = datetime(2001, 1, 1)
increment = "5 minutes, 30 seconds"
for i in range(20):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
increment = "330 seconds"
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 11")
maps = []
a = datetime(2001, 12, 31)
increment = "60 minutes, 30 seconds"
for i in range(24):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
increment = "3630 seconds"
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 12")
maps = []
a = datetime(2001, 12, 31, 12, 30, 30)
increment = "3600 seconds"
for i in range(24):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
print(start)
print(end)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
# Test absolute time points
print("Test 13")
maps = []
a = datetime(2001, 12, 31, 12, 30, 30)
increment = "3600 seconds"
for i in range(24):
start = increment_datetime_by_string(a, increment, i)
end = None
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 14")
maps = []
a = datetime(2001, 12, 31, 00, 00, 00)
increment = "20 days"
for i in range(24):
start = increment_datetime_by_string(a, increment, i)
end = None
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 15")
maps = []
a = datetime(2001, 12, 01, 00, 00, 00)
increment = "5 months"
for i in range(24):
start = increment_datetime_by_string(a, increment, i)
end = None
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
# Test absolute time interval and points
print("Test 16")
maps = []
a = datetime(2001, 12, 31, 12, 30, 30)
increment = "3600 seconds"
for i in range(24):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
a = datetime(2002, 02, 01, 12, 30, 30)
for i in range(24):
start = increment_datetime_by_string(a, increment, i)
end = None
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
print("Test 17")
maps = []
a = datetime(2001, 1, 1)
increment = "2 days"
for i in range(8):
start = increment_datetime_by_string(a, increment, i)
end = increment_datetime_by_string(a, increment, i + 1)
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
a = datetime(2001, 02, 02)
for i in range(8):
start = increment_datetime_by_string(a, increment, i)
end = None
map = RasterDataset(None)
map.set_absolute_time(start, end)
maps.append(map)
gran = compute_absolute_time_granularity(maps)
if increment != gran:
core.fatal("Wrong granularity reference %s != gran %s" % (
increment, gran))
###############################################################################
[docs]def test_spatial_extent_intersection():
# Generate the extents
A = SpatialExtent(
north=80, south=20, east=60, west=10, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=80, south=20, east=60, west=10, bottom=-50, top=50)
B.print_info()
C = A.intersect(B)
C.print_info()
if C.get_north() != B.get_north() or C.get_south() != B.get_south() or \
C.get_west() != B.get_west() or C.get_east() != B.get_east() or \
C.get_bottom() != B.get_bottom() or C.get_top() != B.get_top():
core.fatal("Wrong intersection computation")
B = SpatialExtent(
north=40, south=30, east=60, west=10, bottom=-50, top=50)
B.print_info()
C = A.intersect(B)
C.print_info()
if C.get_north() != B.get_north() or C.get_south() != B.get_south() or \
C.get_west() != B.get_west() or C.get_east() != B.get_east() or \
C.get_bottom() != B.get_bottom() or C.get_top() != B.get_top():
core.fatal("Wrong intersection computation")
B = SpatialExtent(
north=40, south=30, east=60, west=30, bottom=-50, top=50)
B.print_info()
C = A.intersect(B)
C.print_info()
if C.get_north() != B.get_north() or C.get_south() != B.get_south() or \
C.get_west() != B.get_west() or C.get_east() != B.get_east() or \
C.get_bottom() != B.get_bottom() or C.get_top() != B.get_top():
core.fatal("Wrong intersection computation")
B = SpatialExtent(
north=40, south=30, east=60, west=30, bottom=-30, top=50)
B.print_info()
C = A.intersect(B)
C.print_info()
if C.get_north() != B.get_north() or C.get_south() != B.get_south() or \
C.get_west() != B.get_west() or C.get_east() != B.get_east() or \
C.get_bottom() != B.get_bottom() or C.get_top() != B.get_top():
core.fatal("Wrong intersection computation")
B = SpatialExtent(
north=40, south=30, east=60, west=30, bottom=-30, top=30)
B.print_info()
C = A.intersect(B)
C.print_info()
if C.get_north() != B.get_north() or C.get_south() != B.get_south() or \
C.get_west() != B.get_west() or C.get_east() != B.get_east() or \
C.get_bottom() != B.get_bottom() or C.get_top() != B.get_top():
core.fatal("Wrong intersection computation")
###############################################################################
[docs]def test_spatial_relations():
# Generate the extents
A = SpatialExtent(
north=80, south=20, east=60, west=10, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=80, south=20, east=60, west=10, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "equivalent":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(
north=70, south=20, east=60, west=10, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "cover":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "cover":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(
north=70, south=30, east=60, west=10, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "cover":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "cover":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = B.spatial_relation_2d(A)
print(relation)
if relation != "covered":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = B.spatial_relation(A)
print(relation)
if relation != "covered":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(
north=70, south=30, east=50, west=10, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "cover":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = B.spatial_relation_2d(A)
print(relation)
if relation != "covered":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "cover":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(
north=70, south=30, east=50, west=20, bottom=-50, top=50)
relation = B.spatial_relation(A)
print(relation)
if relation != "covered":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(
north=70, south=30, east=50, west=20, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "contain":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "cover":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(
north=70, south=30, east=50, west=20, bottom=-40, top=50)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "cover":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(
north=70, south=30, east=50, west=20, bottom=-40, top=40)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "contain":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = B.spatial_relation(A)
print(relation)
if relation != "in":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(
north=90, south=30, east=50, west=20, bottom=-40, top=40)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "overlap":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "overlap":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(north=90, south=5, east=70, west=5, bottom=-40, top=40)
A.print_info()
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "in":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "overlap":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(north=90, south=5, east=70, west=5, bottom=-40, top=60)
A.print_info()
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "overlap":
core.fatal("Wrong spatial relation: %s" % (relation))
B = SpatialExtent(north=90, south=5, east=70, west=5, bottom=-60, top=60)
A.print_info()
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "in":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=80, south=60, east=60, west=10, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=60, south=20, east=60, west=10, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=60, south=40, east=60, west=10, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=80, south=60, east=60, west=10, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=80, south=40, east=60, west=40, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=80, south=40, east=40, west=20, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=80, south=40, east=40, west=20, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=90, south=30, east=60, west=40, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=80, south=40, east=40, west=20, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=70, south=50, east=60, west=40, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=80, south=40, east=40, west=20, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=60, south=20, east=60, west=40, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=80, south=40, east=40, west=20, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=40, south=20, east=60, west=40, bottom=-50, top=50)
B.print_info()
relation = A.spatial_relation_2d(B)
print(relation)
if relation != "disjoint":
core.fatal("Wrong spatial relation: %s" % (relation))
relation = A.spatial_relation(B)
print(relation)
if relation != "disjoint":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=80, south=40, east=40, west=20, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=60, south=20, east=60, west=40, bottom=-60, top=60)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(
north=80, south=40, east=40, west=20, bottom=-50, top=50)
A.print_info()
B = SpatialExtent(
north=90, south=30, east=60, west=40, bottom=-40, top=40)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=0, top=50)
A.print_info()
B = SpatialExtent(north=80, south=40, east=60, west=20, bottom=-50, top=0)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=0, top=50)
A.print_info()
B = SpatialExtent(north=80, south=50, east=60, west=30, bottom=-50, top=0)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=0, top=50)
A.print_info()
B = SpatialExtent(north=70, south=50, east=50, west=30, bottom=-50, top=0)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=0, top=50)
A.print_info()
B = SpatialExtent(north=90, south=30, east=70, west=10, bottom=-50, top=0)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=0, top=50)
A.print_info()
B = SpatialExtent(north=70, south=30, east=50, west=10, bottom=-50, top=0)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=-50, top=0)
A.print_info()
B = SpatialExtent(north=80, south=40, east=60, west=20, bottom=0, top=50)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=-50, top=0)
A.print_info()
B = SpatialExtent(north=80, south=50, east=60, west=30, bottom=0, top=50)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=-50, top=0)
A.print_info()
B = SpatialExtent(north=70, south=50, east=50, west=30, bottom=0, top=50)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=-50, top=0)
A.print_info()
B = SpatialExtent(north=90, south=30, east=70, west=10, bottom=0, top=50)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
A = SpatialExtent(north=80, south=40, east=60, west=20, bottom=-50, top=0)
A.print_info()
B = SpatialExtent(north=70, south=30, east=50, west=10, bottom=0, top=50)
B.print_info()
relation = A.spatial_relation(B)
print(relation)
if relation != "meet":
core.fatal("Wrong spatial relation: %s" % (relation))
###############################################################################
[docs]def test_temporal_topology_builder():
map_listA = []
_map = RasterDataset(ident="1@a")
_map.set_absolute_time(datetime(2001, 01, 01), datetime(2001, 02, 01))
map_listA.append(copy.copy(_map))
_map = RasterDataset(ident="2@a")
_map.set_absolute_time(datetime(2001, 02, 01), datetime(2001, 03, 01))
map_listA.append(copy.copy(_map))
_map = RasterDataset(ident="3@a")
_map.set_absolute_time(datetime(2001, 03, 01), datetime(2001, 04, 01))
map_listA.append(copy.copy(_map))
_map = RasterDataset(ident="4@a")
_map.set_absolute_time(datetime(2001, 04, 01), datetime(2001, 05, 01))
map_listA.append(copy.copy(_map))
_map = RasterDataset(ident="5@a")
_map.set_absolute_time(datetime(2001, 05, 01), datetime(2001, 06, 01))
map_listA.append(copy.copy(_map))
tb = SpatioTemporalTopologyBuilder()
tb.build(map_listA)
count = 0
for _map in tb:
print("[%s]" % (_map.get_name()))
_map.print_topology_info()
if _map.get_id() != map_listA[count].get_id():
core.fatal("Error building temporal topology <%s> != <%s>" %
(_map.get_id(), map_listA[count].get_id()))
count += 1
map_listB = []
_map = RasterDataset(ident="1@b")
_map.set_absolute_time(datetime(2001, 01, 14), datetime(2001, 03, 14))
map_listB.append(copy.copy(_map))
_map = RasterDataset(ident="2@b")
_map.set_absolute_time(datetime(2001, 02, 01), datetime(2001, 04, 01))
map_listB.append(copy.copy(_map))
_map = RasterDataset(ident="3@b")
_map.set_absolute_time(datetime(2001, 02, 14), datetime(2001, 04, 30))
map_listB.append(copy.copy(_map))
_map = RasterDataset(ident="4@b")
_map.set_absolute_time(datetime(2001, 04, 02), datetime(2001, 04, 30))
map_listB.append(copy.copy(_map))
_map = RasterDataset(ident="5@b")
_map.set_absolute_time(datetime(2001, 05, 01), datetime(2001, 05, 14))
map_listB.append(copy.copy(_map))
tb = SpatioTemporalTopologyBuilder()
tb.build(map_listB)
# Probing some relations
if map_listB[0].get_overlapped()[0] != map_listB[1]:
core.fatal("Error building temporal topology")
if map_listB[0].get_overlapped()[1] != map_listB[2]:
core.fatal("Error building temporal topology")
if map_listB[2].get_contains()[0] != map_listB[3]:
core.fatal("Error building temporal topology")
if map_listB[3].get_during()[0] != map_listB[2]:
core.fatal("Error building temporal topology")
count = 0
for _map in tb:
print("[%s]" % (_map.get_map_id()))
_map.print_topology_shell_info()
if _map.get_id() != map_listB[count].get_id():
core.fatal("Error building temporal topology <%s> != <%s>" %
(_map.get_id(), map_listB[count].get_id()))
count += 1
tb = SpatioTemporalTopologyBuilder()
tb.build(map_listA, map_listB)
count = 0
for _map in tb:
print("[%s]" % (_map.get_map_id()))
_map.print_topology_shell_info()
if _map.get_id() != map_listA[count].get_id():
core.fatal("Error building temporal topology <%s> != <%s>" %
(_map.get_id(), map_listA[count].get_id()))
count += 1
count = 0
for _map in map_listB:
print("[%s]" % (_map.get_map_id()))
_map.print_topology_shell_info()
# Probing some relations
if map_listA[3].get_follows()[0] != map_listB[1]:
core.fatal("Error building temporal topology")
if map_listA[3].get_precedes()[0] != map_listB[4]:
core.fatal("Error building temporal topology")
if map_listA[3].get_overlaps()[0] != map_listB[2]:
core.fatal("Error building temporal topology")
if map_listA[3].get_contains()[0] != map_listB[3]:
core.fatal("Error building temporal topology")
if map_listA[2].get_during()[0] != map_listB[1]:
core.fatal("Error building temporal topology")
if map_listA[2].get_during()[1] != map_listB[2]:
core.fatal("Error building temporal topology")
###############################################################################
[docs]def test_map_list_sorting():
map_list = []
_map = RasterDataset(ident="1@a")
_map.set_absolute_time(datetime(2001, 02, 01), datetime(2001, 03, 01))
map_list.append(copy.copy(_map))
_map = RasterDataset(ident="2@a")
_map.set_absolute_time(datetime(2001, 01, 01), datetime(2001, 02, 01))
map_list.append(copy.copy(_map))
_map = RasterDataset(ident="3@a")
_map.set_absolute_time(datetime(2001, 03, 01), datetime(2001, 04, 01))
map_list.append(copy.copy(_map))
print("Original")
for _map in map_list:
print(_map.get_temporal_extent_as_tuple()[0], _map.get_temporal_extent_as_tuple()[1])
print("Sorted by start time")
new_list = sorted(map_list, key=AbstractDatasetComparisonKeyStartTime)
for _map in new_list:
print(_map.get_temporal_extent_as_tuple()[0], _map.get_temporal_extent_as_tuple()[1])
if new_list[0] != map_list[1]:
core.fatal("Sorting by start time failed")
if new_list[1] != map_list[0]:
core.fatal("Sorting by start time failed")
if new_list[2] != map_list[2]:
core.fatal("Sorting by start time failed")
print("Sorted by end time")
new_list = sorted(map_list, key=AbstractDatasetComparisonKeyEndTime)
for _map in new_list:
print(_map.get_temporal_extent_as_tuple()[0], _map.get_temporal_extent_as_tuple()[1])
if new_list[0] != map_list[1]:
core.fatal("Sorting by end time failed")
if new_list[1] != map_list[0]:
core.fatal("Sorting by end time failed")
if new_list[2] != map_list[2]:
core.fatal("Sorting by end time failed")
###############################################################################
[docs]def test_1d_rtree():
"""Testing the rtree ctypes wrapper"""
tree = rtree.RTreeCreateTree(-1, 0, 1)
for i in range(10):
rect = rtree.RTreeAllocRect(tree)
rtree.RTreeSetRect1D(rect, tree, float(i - 2), float(i + 2))
rtree.RTreeInsertRect(rect, i + 1, tree)
rect = rtree.RTreeAllocRect(tree)
rtree.RTreeSetRect1D(rect, tree, 2.0, 7.0)
list_ = gis.ilist()
num = vector.RTreeSearch2(tree, rect, byref(list_))
rtree.RTreeFreeRect(rect)
# print rectangle ids
print("Number of overlapping rectangles", num)
for i in range(list_.n_values):
print("id", list_.value[i])
rtree.RTreeDestroyTree(tree)
###############################################################################
[docs]def test_2d_rtree():
"""Testing the rtree ctypes wrapper"""
tree = rtree.RTreeCreateTree(-1, 0, 2)
for i in range(10):
rect = rtree.RTreeAllocRect(tree)
rtree.RTreeSetRect2D(rect, tree,
float(i - 2), float(i + 2),
float(i - 2), float(i + 2))
rtree.RTreeInsertRect(rect, i + 1, tree)
rect = rtree.RTreeAllocRect(tree)
rtree.RTreeSetRect2D(rect, tree, 2.0, 7.0, 2.0, 7.0)
list_ = gis.ilist()
num = vector.RTreeSearch2(tree, rect, byref(list_))
rtree.RTreeFreeRect(rect)
# print rectangle ids
print("Number of overlapping rectangles", num)
for i in range(list_.n_values):
print("id", list_.value[i])
rtree.RTreeDestroyTree(tree)
###############################################################################
[docs]def test_3d_rtree():
"""Testing the rtree ctypes wrapper"""
tree = rtree.RTreeCreateTree(-1, 0, 3)
for i in range(10):
rect = rtree.RTreeAllocRect(tree)
rtree.RTreeSetRect3D(rect, tree,
float(i - 2), float(i + 2),
float(i - 2), float(i + 2),
float(i - 2), float(i + 2))
rtree.RTreeInsertRect(rect, i + 1, tree)
print(i + 1)
rtree.RTreePrintRect(rect, 1, tree)
rect = rtree.RTreeAllocRect(tree)
rtree.RTreeSetRect3D(rect, tree, 2.0, 7.0, 2.0, 7.0, 2.0, 7.0)
print("Select")
rtree.RTreePrintRect(rect, 1, tree)
list_ = gis.ilist()
num = vector.RTreeSearch2(tree, rect, byref(list_))
rtree.RTreeFreeRect(rect)
# print rectangle ids
print("Number of overlapping rectangles", num)
for i in range(list_.n_values):
print("id", list_.value[i])
rtree.RTreeDestroyTree(tree)
###############################################################################
[docs]def test_4d_rtree():
"""Testing the rtree ctypes wrapper"""
tree = rtree.RTreeCreateTree(-1, 0, 4)
for i in range(10):
# Allocate the boundary
rect = rtree.RTreeAllocRect(tree)
rtree.RTreeSetRect4D(rect, tree,
float(i - 2), float(i + 2),
float(i - 2), float(i + 2),
float(i - 2), float(i + 2),
float(i - 2), float(i + 2))
rtree.RTreeInsertRect(rect, i + 1, tree)
rect = rtree.RTreeAllocRect(tree)
rtree.RTreeSetRect4D(rect, tree, 2.0, 7.0, 2.0,
7.0, 2.0, 7.0, 2.0, 7.0)
list_ = gis.ilist()
num = vector.RTreeSearch2(tree, rect, byref(list_))
rtree.RTreeFreeRect(rect)
# print rectangle ids
print("Number of overlapping rectangles", num)
for i in range(list_.n_values):
print("id", list_.value[i])
rtree.RTreeDestroyTree(tree)
###############################################################################
if __name__ == "__main__":
init()
test_increment_datetime_by_string()
test_adjust_datetime_to_granularity()
test_spatial_extent_intersection()
test_compute_absolute_time_granularity()
test_compute_datetime_delta()
test_spatial_extent_intersection()
test_spatial_relations()
test_temporal_topology_builder()
test_map_list_sorting()
test_1d_rtree()
test_2d_rtree()
test_3d_rtree()
test_4d_rtree()
Help Index | Topics Index | Keywords Index | Full Index
© 2003-2019 GRASS Development Team, GRASS GIS 7.2.4svn Reference Manual