NAME
i.pysptools.unmix - Extract endmembers from imagery group and perform spectral unmixing using pysptools
KEYWORDS
imagery,
endmember,
spectral unmixing
SYNOPSIS
i.pysptools.unmix
i.pysptools.unmix --help
i.pysptools.unmix [-n] input=name [output=name] [prefix=string] [endmembers=name] endmember_n=integer [extraction_method=string] [unmixing_method=string] [maxit=integer] [--overwrite] [--help] [--verbose] [--quiet] [--ui]
Flags:
- -n
- Do not use Automatic Target Generation Process (ATGP)
- --overwrite
- Allow output files to overwrite existing files
- --help
- Print usage summary
- --verbose
- Verbose module output
- --quiet
- Quiet module output
- --ui
- Force launching GUI dialog
Parameters:
- input=name [required]
- Input imagery group
- output=name
- Text file storing endmember information for i.spec.unmix
- prefix=string
- Prefix for resulting raster maps
- endmembers=name
- Vector map representing identified endmembers
- endmember_n=integer [required]
- Number of endmembers to identify
- extraction_method=string
- Method for endmember extraction
- Options: FIPPI, PPI, NFINDR
- Default: NFINDR
- unmixing_method=string
- Algorithm for spectral unmixing
- Options: FCLS, UCLS, NNLS
- Default: FCLS
- maxit=integer
- Maximal number of iterations for endmember extraction (default=3*number of bands)
i.pysptools.unmix extracts endmembers from imagery group and performs
spectral unmixing using
pysptools.
The module is a wrapper around the pysptools Python library, that integrates
its functionality for
Endmember Extraction
and Spectral
Unmixing into GRASS GIS.
It requires that the Python libraries pysptools and scikit-learn
are installed.
Supported algorithms for
Endmember Extraction
are:
- NFINDR: N-FINDR endmembers induction algorithm after Winter (1999),
that also makes use of an Automatic Target Generation Process (ATGP) (Plaza &
Chang 2006). (Default)
- FIPPI: Fast Iterative Pixel Purity Index after Chang (2006)
- PPI: Pixel Purity Index
Supported algorithms for
Spectral Unmixing
are:
- FCLS: Fully Constrained Least Squares (FCLS): Estimates endmember
abundance per pixel with the constraint that values are non-negative and sum up
to one per pixel (Default)
- UCLS: Unconstrained Least Squares (UCLS): Estimates endmember
abundance per pixel in an unconstrained way
- NNLS: Non-negative Constrained Least Squares (NNLS): Estimates endmember
abundance per pixel with the constraint that values are non-negative
Number of endmembers to extract (endmember_n) is supposed to be lower
than the number of bands in the imagery group. Only the PPI method can
extract more endmembers than there are bands in the imagery group.
# List bands
bands=`g.list type=raster pattern=lsat7_2002* separator=','`
# Create imagery group
i.group group=lsat_2002 input="$bands"
# Extract Endmembers and perform spectral unmixing using pysptools
i.pysptools.unmix input=lsat_2002 endmembers=endmembers endmember_n=5 \
output=spectrum.txt prefix=lsat_spectra --v
# Compare to result from i.spec.unmix
i.spec.unmix group=lsat7_2002 matrix=sample/spectrum.dat result=lsat7_2002_unmix \
error=lsat7_2002_unmix_err iter=lsat7_2002_unmix_iterations
Chang, C.-I. 2006: A fast iterative algorithm for implementation of pixel
purity index. Geoscience and Remote Sensing Letters, IEEE, 3(1): 63-67.
Plaza, A. & Chang, C.-I. 2006: Impact of Initialization on Design of
Endmember Extraction Algorithms. Geoscience and Remote Sensing,
IEEE Transactions. 44(11): 3397-3407.
Winter, M. E. 1999: N-FINDR: an algorithm for fast autonomous spectral
end-member determination in hyperspectral data. Presented at the
Imaging Spectrometry V, Denver, CO, USA, (3753): 266-275.
i.spec.unmix
Stefan Blumentrath,
Norwegian Institute for Nature Research (NINA), Oslo, Norway
Zofie Cimburova,
Norwegian Institute for Nature Research (NINA), Oslo, NorwaySOURCE CODE
Available at: i.pysptools.unmix source code (history)
Main index |
Imagery index |
Topics index |
Keywords index |
Graphical index |
Full index
© 2003-2019
GRASS Development Team,
GRASS GIS 7.4.5svn Reference Manual