Note: This document is for an older version of GRASS GIS that is outdated. You should upgrade, and read the current addon manual page.
NAME
r.futures.potential - Module for computing development potential as input to r.futures.pga
KEYWORDS
raster,
statistics
SYNOPSIS
r.futures.potential
r.futures.potential --help
r.futures.potential [-d] input=name output=name columns=name[,name,...] developed_column=name subregions_column=name [min_variables=integer] [max_variables=integer] [--overwrite] [--help] [--verbose] [--quiet] [--ui]
Flags:
- -d
- Use dredge fuction to find best model
- --overwrite
- Allow output files to overwrite existing files
- --help
- Print usage summary
- --verbose
- Verbose module output
- --quiet
- Quiet module output
- --ui
- Force launching GUI dialog
Parameters:
- input=name [required]
- Name of input vector map
- Or data source for direct OGR access
- output=name [required]
- Output Potential file
- columns=name[,name,...] [required]
- Names of attribute columns representing sampled predictors
- developed_column=name [required]
- Name of attribute column representing development
- subregions_column=name [required]
- Name of attribute column representing subregions
- min_variables=integer
- Minimum number of predictors considered
- Options: 1-20
- Default: 1
- max_variables=integer
- Maximum number of predictors considered
- Options: 1-20
Module
r.futures.potential implements POTENTIAL submodel
as a part of
FUTURES land change model.
POTENTIAL is implemented using a set of coefficients that
relate a selection of site suitability factors to the probability
of a place becoming developed. This is implemented using
the parameter table in combination with maps of those site
suitability factors (mapped predictors).
The coefficients are obtained by conducting multilevel logistic regression in R
with package
lme4
where the coefficients may vary by subregions.
The best model is selected automatically using
dredge
function from package
MuMIn
(which has numerous caveats).
Module r.futures.potential can run it two modes. Without the -d
flag, it uses all the given predictors to construct the model. With -d
flag, it evaluates all the different combinations of predictors
and picks the best one based on AIC.
The format of the output file is a CSV file (but with tabs as delimiters).
The header contains the names of the predictor maps and the first column
contains the identifiers of the subregions. The order of columns is important,
the second column represents intercept, the third development pressure and
then the predictors. Therefore the development pressure column must be specified
as the first column in option
columns.
ID Intercept devpressure_0_5 slope road_dens_perc forest_smooth_perc ...
37037 -1.873 12.595 -0.0758 0.0907 -0.0223 ...
37063 -2.039 12.595 -0.0758 0.0907 -0.0223 ...
37069 -1.795 12.595 -0.0758 0.0907 -0.0223 ...
37077 -1.264 12.595 -0.0758 0.0907 -0.0223 ...
37085 -1.925 12.595 -0.0758 0.0907 -0.0223 ...
...
Note that this module is designed to automate the FUTURES workflow by brute-force
selection of model, which has numerous caveats.
In case there is only one subregion, R function glm is used instead of glmer.
FUTURES,
r.futures.pga,
r.futures.devpressure,
r.futures.potsurface,
r.futures.demand,
r.futures.calib,
r.sample.category
-
Meentemeyer, R. K., Tang, W., Dorning, M. A., Vogler, J. B., Cunniffe, N. J., & Shoemaker, D. A. (2013).
FUTURES: Multilevel Simulations of Emerging
Urban-Rural Landscape Structure Using a Stochastic Patch-Growing Algorithm.
Annals of the Association of American Geographers, 103(4), 785-807.
DOI: 10.1080/00045608.2012.707591
- Dorning, M. A., Koch, J., Shoemaker, D. A., & Meentemeyer, R. K. (2015).
Simulating urbanization scenarios reveals
tradeoffs between conservation planning strategies.
Landscape and Urban Planning, 136, 28-39.
DOI: 10.1016/j.landurbplan.2014.11.011
- Petrasova, A., Petras, V., Van Berkel, D., Harmon, B. A., Mitasova, H., & Meentemeyer, R. K. (2016).
Open Source Approach to Urban Growth Simulation.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 953-959.
DOI: 10.5194/isprsarchives-XLI-B7-953-2016
Anna Petrasova,
NCSU GeoForAll
Last changed: $Date: 2018-09-15 03:49:22 +0200 (Sat, 15 Sep 2018) $
SOURCE CODE
Available at: r.futures.potential source code (history)
Main index |
Raster index |
Topics index |
Keywords index |
Graphical index |
Full index
© 2003-2019
GRASS Development Team,
GRASS GIS 7.4.5svn Reference Manual