Note: This document is for an older version of GRASS GIS that will be discontinued soon. You should upgrade, and read the current manual page.

GRASS logo

NAME

t.rast.series - Performs different aggregation algorithms from r.series on all or a subset of raster maps in a space time raster dataset.

KEYWORDS

temporal, aggregation, series, raster, time

SYNOPSIS

t.rast.series
t.rast.series --help
t.rast.series [-tn] input=name method=string[,string,...] [quantile=float[,float,...]] [order=string[,string,...]] [where=sql_query] output=name[,name,...] [--overwrite] [--help] [--verbose] [--quiet] [--ui]

Flags:

-t
Do not assign the space time raster dataset start and end time to the output map
-n
Propagate NULLs
--overwrite
Allow output files to overwrite existing files
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--ui
Force launching GUI dialog

Parameters:

input=name [required]
Name of the input space time raster dataset
method=string[,string,...] [required]
Aggregate operation to be performed on the raster maps
Options: average, count, median, mode, minimum, min_raster, maximum, max_raster, stddev, range, sum, variance, diversity, slope, offset, detcoeff, quart1, quart3, perc90, quantile, skewness, kurtosis
Default: average
quantile=float[,float,...]
Quantile to calculate for method=quantile
Options: 0.0-1.0
order=string[,string,...]
Sort the maps by category
Options: id, name, creator, mapset, creation_time, modification_time, start_time, end_time, north, south, west, east, min, max
Default: start_time
where=sql_query
WHERE conditions of SQL statement without 'where' keyword used in the temporal GIS framework
Example: start_time > '2001-01-01 12:30:00'
output=name[,name,...] [required]
Name for output raster map(s)

Table of contents

DESCRIPTION

The input of this module is a single space time raster dataset, the output is a single raster map layer. A subset of the input space time raster dataset can be selected using the where option. The sorting of the raster map layer can be set using the order option. Be aware that the order of the maps can significantly influence the result of the aggregation (e.g.: slope). By default the maps are ordered by start_time.

t.rast.series is a simple wrapper for the raster module r.series. It supports a subset of the aggregation methods of r.series.

EXAMPLES

Estimate the average temperature for the whole time series

Here the entire stack of input maps is considered:
t.rast.series input=tempmean_monthly output=tempmean_average method=average

Estimate the average temperature for a subset of the time series

Here the stack of input maps is limited to a certain period of time:
t.rast.series input=tempmean_daily output=tempmean_season method=average \
  where="start_time >= '2012-06' and start_time <= '2012-08'"

Climatology: single month in a multi-annual time series

By considering only a single month in a multi-annual time series the so-called climatology can be computed. Estimate average temperature for all January maps in the time series:
t.rast.series input=tempmean_monthly \
    method=average output=tempmean_january \
    where="strftime('%m', start_time)='01'"

# equivalently, we can use 
t.rast.series input=tempmean_monthly \
    output=tempmean_january method=average \
    where="start_time = datetime(start_time, 'start of year', '0 month')"

# if we want also February and March averages

t.rast.series input=tempmean_monthly \
    output=tempmean_february method=average \
    where="start_time = datetime(start_time, 'start of year', '1 month')"

t.rast.series input=tempmean_monthly \
    output=tempmean_march method=average \
    where="start_time = datetime(start_time, 'start of year', '2 month')"
Generalizing a bit, we can estimate monthly climatologies for all months by means of different methods
for i in `seq -w 1 12` ; do 
  for m in average stddev minimum maximum ; do 
    t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
    where="strftime('%m', start_time)='${i}'"
  done
done

SEE ALSO

r.series, t.create, t.info

Temporal data processing Wiki

AUTHOR

Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE

Available at: t.rast.series source code (history)

Latest change: Thursday Oct 01 17:35:27 2020 in commit: 744fcaefa6aa37121e72a9530e90b48fa07bef3a


Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

© 2003-2023 GRASS Development Team, GRASS GIS 7.8.9dev Reference Manual