Note: This document is for an older version of GRASS GIS that is outdated. You should upgrade, and read the current addon manual page.
 
NAME
i.fusion.hpf  - Fusing high resolution panchromatic and low resolution multi-spectral data based on the High-Pass Filter Addition technique (Gangkofner, 2008).
KEYWORDS
imagery, 
fusion, 
sharpening, 
high pass filter, 
HPFA
SYNOPSIS
i.fusion.hpf
i.fusion.hpf --help
i.fusion.hpf [-l2ca] pan=name msx=name[,name,...] suffix=basename  [ratio=float]   [center=string]   [center2=string]   [modulation=string]   [modulation2=string]   [trim=float]   [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui] 
Flags:
- -l
- Linearly match histogram of Pan-sharpened output to Multi-Spectral input
- Default: Quantile scaling
- -2
- 2-Pass Processing (recommended) for large resolution ratio (>=5.5)
- -c
- Match color table of Pan-Sharpened output to Multi-Spectral input
- -a
- Align output to pan band
- Default: set resolution from pan band
- --overwrite
- Allow output files to overwrite existing files
- --help
- Print usage summary
- --verbose
- Verbose module output
- --quiet
- Quiet module output
- --ui
- Force launching GUI dialog
 
Parameters:
- pan=name [required]
- High resolution Panchromatic image
- msx=name[,name,...] [required]
- Low resolution Multi-Spectral image(s)
- suffix=basename [required]
- Suffix for output image(s)
- Names of Pan-Sharpened image(s) will end with this suffix
- Default: hpf
- ratio=float
- Custom ratio
- Custom ratio overriding standard calculation
- Options: 1.0-10.0
- center=string
- Center cell value
- Center cell value of the High-Pass-Filter
- Options: low, mid, high
- Default: low
- center2=string
- 2nd Pass center cell value
- Center cell value for the second High-Pass-Filter (use -2 flag)
- Options: low, mid, high
- Default: low
- modulation=string
- Modulation level
- Modulation level weighting the HPF image determining crispness
- Options: min, mid, max
- Default: mid
- modulation2=string
- 2nd Pass modulation level (use -2 flag)
- Modulation level weighting the second HPF image determining crispness (use -2 flag)
- Options: min, mid, max
- Default: mid
- min: Minimum: 0.25
- mid: Mid: 0.35
- max: Maximum: 0.5
- trim=float
- Trimming factor
- Trim output border pixels by a factor of the pixel size of the low resolution image. A factor of 1.0 may suffice.
 
i.fusion.hpf is an implementation of the High Pass Filter Additive
(HPFA) Fusion Technique. It combines high-resolution panchromatic data with
lower resolution multispectral data, resulting in an output with both excellent
detail and a realistic representation of original multispectral scene colors.
The process involves a convolution using a High Pass Filter (HPF) on the high 
resolution data, then combining this with the lower resolution multispectral 
data. Optionally, a linear histogram matching technique is performed in a way that 
matches the resulting Pan-Sharpened image to the statistical mean and standard 
deviation of the original multi-spectral image.
    - Computing ratio of low (Multi-Spectral) to high (Panchromatic)
        resolutions
- High Pass Filtering the Panchromatic Image
- Resampling MSX image to the higher resolution
- Adding weighted High-Pass-Filetred image to the upsampled MSX
        image
- Optionally, matching histogram of Pansharpened image to the one of
        the original MSX image
Figure:
 ____________________________________________________________________________
+                                                                            +
| Pan Img ->  High Pass Filter  ->  HP Img                                   |
|                                      |                                     |
|                                      v                                     |
| MSx Img ->  Weighting Factors ->  Weighted HP Img                          |
|       |                              |                                     |
|       |                              v                                     |
|       +------------------------>  Addition to MSx Img  =>  Fused MSx Image |
+____________________________________________________________________________+
Source: Gangkofner, 2008
    -  Grasping and testing the various parameters that define the High-Pass
        filter's kernel size and center value is a matter of short time.
-  Works with any number and type of raster imagery (8-bit, 16-bit)
-  The "black border" effect, possibly caused due to a non-perfect match of the high vs. the low 
        resolution of the input images, can be trimmed out by using the trimoption --a floating point "trimming factor" with which to multiply the
        pixel size of the low resolution image-- and shrink the extent of the
        output image.
The module is fairly easy to use. Arbitrary examples:
i.fusion.hpf pan=Panchromatic msx=Red
i.fusion.hpf pan=Panchromatic msx=Red,Green,Blue,NIR
Example using the North Carolina sample dataset, 
landsat mapset:
# pansharpening of R, G, B, NIR
g.region raster=lsat7_2002_80 -p
i.fusion.hpf pan=lsat7_2000_80 msx=lsat7_2000_10,lsat7_2000_20,lsat7_2000_30,lsat7_2000_40 suffix=_hpf
# visual comparison
d.mon wx0
d.rgb b=lsat7_2000_10 g=lsat7_2000_20 r=lsat7_2000_30
# color balance pansharpened scene
i.colors.enhance b=lsat7_2000_10_hpf g=lsat7_2000_20_hpf r=lsat7_2000_30_hpf
d.rgb b=lsat7_2000_10_hpf g=lsat7_2000_20_hpf r=lsat7_2000_30_hpf
 Figure: Original Landsat 7 RGB color composite at 28.5m resolution (North Carolina, Raleigh subset)
Figure: Original Landsat 7 RGB color composite at 28.5m resolution (North Carolina, Raleigh subset)
 
 Figure: Pansharpened Landsat 7 RGB color composite at 14.25m resolution(North Carolina, Raleigh subset)
Figure: Pansharpened Landsat 7 RGB color composite at 14.25m resolution(North Carolina, Raleigh subset)
 
Various illustrated examples detailed in the document
i.fusion.hpf, implementation of the High Pass Filter Additive (HPFA) Image Fusion Technique (PDF)
    -  Go through Submitting Python
-  Access input raster by row I/O
-  Support for parallel processing
-  Proper command history tracking.
-  Add timestamps (r.timestamp, temporal framework)
-  Deduplicate code where applicable
-  Make verbose level messages shorter, yet more informative (ie report center cell)
-  Test if it compiles in other systems
-  Check options to integrate in i.pansharpen. Think of FFM methods vs. Others?
-  Improve Documentation.lyx
    - Gangkofner, U. G., Pradhan, P. S., and Holcomb, D. W. (2008). Optimizing
the high-pass filter addition technique for image fusion.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 74(9):1107--1118.
- "ERDAS IMAGINE." Accessed March 19, 2015. ERDAS
     IMAGINE Help.
- Aniruddha Ghosh & P.K. Joshi (2013) Assessment of pan-sharpened very
        high-resolution WorldView-2 images, International Journal of Remote
        Sensing, 34:23, 8336-8359
i.pansharpen
Nikos Alexandris
Panagiotis Mavrogiorgos
SOURCE CODE
  Available at:
  i.fusion.hpf source code
  (history)
  Latest change: Thu Mar 17 10:34:38 2022 in commit: 99003aa1434e41cd511b77023e2dd4a2232b7a8e
Main index |
Imagery index |
Topics index |
Keywords index |
Graphical index |
Full index
© 2003-2022
GRASS Development Team,
GRASS GIS 8.0.3dev Reference Manual