Note: This addon document is for an older version of GRASS GIS that will be discontinued soon. You should upgrade your GRASS GIS installation, and read the current addon manual page.
For each input point in an input vector map v.percolate outputs the following information at each threshdold distance:
Cat
<fieldname>
X
Y
Membership
FirstChange
LastChange
NChanges
FirstDistance
LastDistance
MaxConCoeff
LastGroupConnected
LastDistanceConnection
For each cluster formed or already in existence at each threshold distance v.percolate outputs:
Cluster
Birth
BirthDist
Death
DeathDist
Longevity
MaxSize
Wins
In addition to identifying clusters, v.percolate also computes an experimental Connection Coefficient for each point location. This numerical value is intended to capture a property roughly analogous to Betweeness Centrality in network analysis. The Connection Coefficient is smaller if a point location joins 2 small clusters, or 1 large and 1 small cluster, and greater if it joins 2 large clusters.
By default, the series of distance thresholds at which the above statistics will be reported is determined by setting min, inc and max. v.percolate will never proceed beyond the maximum distance threshold, but it may cease to provide output before that distance is reached if the -e flag is set to force termination once all input points are connected in one cluster.
If interval is set to a positive non-zero value then v.percolate no longer outputs statistics at fixed distance thresholds. Instead, it outputs statistics for every Nth node-pair that is joined in a cluster, where N is the value given as the interval. In general this is less useful than the default behaviour, but it has application for certain purposes.
The value of keep determines what happens when two clusters, each of 2 or more points, are to be joined. The choice is between absorbing the more recently formed cluster into the older cluster, or absorbing the smaller cluster into the large cluster. Setting keep to 'oldest' makes it possible to track the gradual growth of one large super-cluster, but that is not necessarily most appropriate if the location of the first cluster is of no real significance.
v.percolate has a very specific purpose, which is to facilitate continuum percolation analysis of point locations, as for example described in Arcaute et al. 2016. The emphasis of this form of analysis is less on finding optimal partitioning of points into clusters of certain sizes and more on observing discontinuities in cluster growth for the purpose of identifying 'natural' sales of interaction. Thus v.percolate automates the reasonably efficient production and recording of clusters at multiple threshold distances. For example, on a 2018 mid-range laptop computer v.percolate requires around 100 seconds user time to find clusters in 10,513 points (55,256,328 pairwise relationships) at 128 different distance thresholds. Since the results will almost certainly be subject to further analysis in other software, such as R, a range of information (as described above) is output into plain text CSV files.
Note that v.percolate offers only one method of clustering, which is based purely on threshold distance: if 2 points are closer than the threshold distance then they are joined in a cluster. This method will return the same clusters as the DBSCAN method if one relaxes the latter's requirement for clusters to include a minimum number of points. As a result, clusters created using v.percolate can be joined together by long strings of points, each with only 2 neighbours within the given threshold difference, a situation which DBSCAN avoids.
Mark Lake, UCL Institute of Archaeology, University College London, UK
Available at: v.percolate source code (history)
Latest change: Monday Jun 28 07:54:09 2021 in commit: 1cfc0af029a35a5d6c7dae5ca7204d0eb85dbc55
Note: This addon document is for an older version of GRASS GIS that will be discontinued soon. You should upgrade your GRASS GIS installation, and read the current addon manual page.
Main index | Vector index | Topics index | Keywords index | Graphical index | Full index
© 2003-2023 GRASS Development Team, GRASS GIS 7.8.8dev Reference Manual