Topic: classification
Tool | Description |
---|---|
i.cluster | The resulting signature file is used as input for i.maxlik, to generate an unsupervised image classification. |
i.gensig | Generates statistics for i.maxlik from raster map. |
i.gensigset | Generates statistics for i.smap from raster map. |
i.maxlik | Classification is based on the spectral signature information generated by either i.cluster, g.gui.iclass, or i.gensig. |
i.signatures | Manage imagery classification signature files |
i.smap | Performs contextual image classification using sequential maximum a posteriori (SMAP) estimation. |
v.class | Classifies attribute data, e.g. for thematic mapping |
See also the corresponding keyword for additional references:
classification
- g.gui.iclass - wxGUI Supervised Classification Tool
- i.cluster - The resulting signature file is used as input for i.maxlik, to generate an unsupervised image classification.
- i.gensig - Generates statistics for i.maxlik from raster map.
- i.gensigset - Generates statistics for i.smap from raster map.
- i.maxlik - Classification is based on the spectral signature information generated by either i.cluster, g.gui.iclass, or i.gensig.
- i.segment - Identifies segments (objects) from imagery data.
- i.signatures - Manage imagery classification signature files
- i.smap - Performs contextual image classification using sequential maximum a posteriori (SMAP) estimation.
- i.svm.predict - Predict with a Support Vector Machine
- i.svm.train - Train a Support Vector Machine
- r.confusionmatrix - Calculates a confusion matrix and accuracies for a given classification using r.kappa.
- r.kappa - Calculates error matrix and kappa parameter for accuracy assessment of classification result.
- r.learn.ml - Supervised classification and regression of GRASS rasters using the python scikit-learn package
- r.learn.predict - Apply a fitted scikit-learn estimator to rasters in a GRASS GIS imagery group.
- r.learn.train - Supervised classification and regression of GRASS rasters using the python scikit-learn package.
- r.terrain.texture - Unsupervised nested-means algorithm for terrain classification
- v.class - Classifies attribute data, e.g. for thematic mapping
- v.class.mlR - Provides supervised support vector machine classification
- v.class.mlpy - Vector supervised classification tool which uses attributes as classification parametres (order of columns matters, names not), cat column identifies feature, class_column is excluded from classification parametres.
- v.lidar.mcc - Reclassifies points of a LiDAR point cloud as ground / non-ground using a multiscale curvature based classification algorithm.
- wxGUI Supervised Classification Tool - wxGUI Supervised Classification Tool