GRASS logo

NAME

t.rast.neighbors - Performs a neighborhood analysis for each map in a space time raster dataset.

KEYWORDS

temporal, aggregation, raster, time

SYNOPSIS

t.rast.neighbors
t.rast.neighbors --help
t.rast.neighbors [-cenr] input=name output=name [where=sql_query] [region_relation=string] [selection=name] [size=integer] method=string [weighting_function=string] [weighting_factor=float] [weight=name] [quantile=float[,float,...]] basename=string [suffix=string] [semantic_labels=string] [nprocs=integer] [--overwrite] [--help] [--verbose] [--quiet] [--ui]

Flags:

-c
Use circular neighborhood
-e
Extend existing space time raster dataset
-n
Register Null maps
-r
Ignore the current region settings and use the raster map regions
--overwrite
Allow output files to overwrite existing files
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--ui
Force launching GUI dialog

Parameters:

input=name [required]
Name of the input space time raster dataset
output=name [required]
Name of the output space time raster dataset
where=sql_query
WHERE conditions of SQL statement without 'where' keyword used in the temporal GIS framework
Example: start_time > '2001-01-01 12:30:00'
region_relation=string
Process only maps with this spatial relation to the current computational region
Options: overlaps, contains, is_contained
selection=name
Name of an input raster map to select the cells which should be processed
size=integer
Neighborhood size
Default: 3
method=string [required]
Aggregate operation to be performed on the raster maps
Options: average, median, mode, minimum, maximum, range, stddev, sum, count, variance, diversity, interspersion, quart1, quart3, perc90, quantile
Default: average
weighting_function=string
Weighting function
Options: none, gaussian, exponential, file
Default: none
none: No weighting
gaussian: Gaussian weighting function
exponential: Exponential weighting function
file: File with a custom weighting matrix
weighting_factor=float
Factor used in the selected weighting function (ignored for weighting_function=none and file)
weight=name
Text file containing weights
quantile=float[,float,...]
Quantile to calculate for method=quantile
Options: 0.0-1.0
basename=string [required]
Basename of the new generated output maps
A numerical suffix separated by an underscore will be attached to create a unique identifier
suffix=string
Suffix to add at basename: set 'gran' for granularity, 'time' for the full time format, 'num' for numerical suffix with a specific number of digits (default %05)
Default: gran
semantic_labels=string
Set semantic labels
Options: input, method
Default: input
input: copy semantic labels from input to output
method: append method name to input label if existing, otherwise use method name
nprocs=integer
Number of r.neighbor processes to run in parallel
Default: 1

Table of contents

DESCRIPTION

t.rast.neighbors performs r.neighbors computations on the maps of a space time raster dataset (STRDS). This module supports the options that are available in r.neighbors.

The user must provide an input and an output space time raster dataset and the basename of the resulting raster maps. The resulting STRDS will have the same temporal resolution as the input dataset. With the -e flag, resulting maps can be registered in an existing STRDS, that e.g. may have been created with a previous run of t.rast.neighbors. All maps will be processed using the current region settings unless the -r flag is selected. In the latter case, the computaional region is set to each raster map selected from the input STRDS.

The user can select a subset of the input space time raster dataset for processing using a SQL WHERE statement or using the region_relation for spatial selection of raster maps. For the spatial map selection the current computational region is used, even when the -r flag is given. The number of CPU's to be used for parallel processing can be specified with the nprocs option to speedup the computation on multi-core system.

Semantic labels are needed to relate output raster maps to input raster maps. E.g. with method=stddev, the user needs to know the spatial extent, the time stamp and the semantic label to determine which stddev map corresponds to which input map.

EXAMPLE

To smooth the maps contained in a space time dataset run:
t.rast.neighbors input=tempmean_monthly output=smooth_tempmean_monthly \
                 basename=tmean_smooth size=5 method=average nprocs=4

# show some info about the new space time dataset
t.info smooth_tempmean_monthly
 +-------------------- Space Time Raster Dataset -----------------------------+
 |                                                                            |
 +-------------------- Basic information -------------------------------------+
 | Id: ........................ smooth_tempmean_monthly@climate_2000_2012
 | Name: ...................... smooth_tempmean_monthly
 | Mapset: .................... climate_2000_2012
 | Creator: ................... lucadelu
 | Temporal type: ............. absolute
 | Creation time: ............. 2014-11-27 11:41:36.444579
 | Modification time:.......... 2014-11-27 11:41:39.978232
 | Semantic type:.............. mean
 +-------------------- Absolute time -----------------------------------------+
 | Start time:................. 2009-01-01 00:00:00
 | End time:................... 2013-01-01 00:00:00
 | Granularity:................ 1 month
 | Temporal type of maps:...... interval
 +-------------------- Spatial extent ----------------------------------------+
 | North:...................... 320000.0
 | South:...................... 10000.0
 | East:.. .................... 935000.0
 | West:....................... 120000.0
 | Top:........................ 0.0
 | Bottom:..................... 0.0
 +-------------------- Metadata information ----------------------------------+
 | Raster register table:...... raster_map_register_ea1c9a83524e41a784d72744b08c6107
 | North-South resolution min:. 500.0
 | North-South resolution max:. 500.0
 | East-west resolution min:... 500.0
 | East-west resolution max:... 500.0
 | Minimum value min:.......... -6.428905
 | Minimum value max:.......... 18.867296
 | Maximum value min:.......... 4.247691
 | Maximum value max:.......... 28.767953
 | Aggregation type:........... None
 | Number of registered maps:.. 48
 |
 | Title:
 | Monthly precipitation
 | Description:
 | Dataset with monthly precipitation
 | Command history:
 | # 2014-11-27 11:41:36
 | t.rast.neighbors input="tempmean_monthly"
 |     output="smooth_tempmean_monthly" basename="tmean_smooth" size="5"
 |     method="average" nprocs="4"
 |
 +----------------------------------------------------------------------------+


# now compare the values between the original and the smoothed dataset

t.rast.list input=smooth_tempmean_monthly columns=name,start_time,min,max
name|start_time|min|max
tmean_smooth_1|2009-01-01 00:00:00|-3.361714|7.409861
tmean_smooth_2|2009-02-01 00:00:00|-1.820261|7.986794
tmean_smooth_3|2009-03-01 00:00:00|2.912971|11.799684
...
tmean_smooth_46|2012-10-01 00:00:00|9.38767|18.709297
tmean_smooth_47|2012-11-01 00:00:00|1.785653|10.911189
tmean_smooth_48|2012-12-01 00:00:00|1.784212|11.983857

t.rast.list input=tempmean_monthly columns=name,start_time,min,max
name|start_time|min|max
2009_01_tempmean|2009-01-01 00:00:00|-3.380823|7.426054
2009_02_tempmean|2009-02-01 00:00:00|-1.820261|8.006386
2009_03_tempmean|2009-03-01 00:00:00|2.656992|11.819274
...
2012_10_tempmean|2012-10-01 00:00:00|9.070884|18.709297
2012_11_tempmean|2012-11-01 00:00:00|1.785653|10.911189
2012_12_tempmean|2012-12-01 00:00:00|1.761019|11.983857

SEE ALSO

r.neighbors, t.rast.aggregate.ds, t.rast.extract, t.info, g.region, r.mask

AUTHOR

Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE

Available at: t.rast.neighbors source code (history)

Latest change: Wednesday Oct 23 17:12:02 2024 in commit: 533070dbc9807657e96ec376f23ab6db64fbdc9a


Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

© 2003-2024 GRASS Development Team, GRASS GIS 8.5.0dev Reference Manual