r.green.gshp.theoretical
Calculate the Ground Source Heat Pump potential
r.green.gshp.theoretical [-d] ground_conductivity=name [heating_season_raster=name] [heating_season_value=double] [power_value=double] [ground_capacity_raster=name] [ground_capacity_value=double] [ground_temp_raster=name] [ground_temp_value=double] [borehole_radius=double] [borehole_resistence=double] [borehole_length=double] [pipe_radius=double] [number_pipes=integer] [grout_conductivity=double] [fluid_limit_temperature=double] [lifetime=integer] power=name energy=name [length=name] [--overwrite] [--verbose] [--quiet] [--qq] [--ui]
Example:
r.green.gshp.theoretical ground_conductivity=name power=name energy=name
grass.script.run_command("r.green.gshp.theoretical", ground_conductivity, heating_season_raster=None, heating_season_value=180., power_value=nan, ground_capacity_raster=None, ground_capacity_value=2.5, ground_temp_raster=None, ground_temp_value=10., borehole_radius=0.075, borehole_resistence=nan, borehole_length=100, pipe_radius=0.016, number_pipes=4, grout_conductivity=2, fluid_limit_temperature=-2, lifetime=50, power, energy, length=None, flags=None, overwrite=False, verbose=False, quiet=False, superquiet=False)
Example:
gs.run_command("r.green.gshp.theoretical", ground_conductivity="name", power="name", energy="name")
Parameters
ground_conductivity=name [required]
Raster with depth-averaged ground thermal conductivity lambda [W m-1 K-1]
heating_season_raster=name
Raster with the Heating Season [0-365] days
heating_season_value=double
Heating Season [0-365] days
Allowed values: 0-365
Default: 180.
power_value=double
Power value in kW
Default: nan
ground_capacity_raster=name
Raster with depth-averaged ground thermal capacity rho_c [MJ m-3 K-1]
ground_capacity_value=double
Value with depth-averaged ground thermal capacity rho_c [MJ m-3 K-1]
Default: 2.5
ground_temp_raster=name
Raster with the initial ground temperature T0 [degrees C]
ground_temp_value=double
Value with the initial ground temperature T0 [degrees C]
Default: 10.
borehole_radius=double
Borehole radius [m]
Default: 0.075
borehole_resistence=double
Borehole thermal resistence [m K W-1]
Default: nan
borehole_length=double
Borehole length [m]
Default: 100
pipe_radius=double
Pipe radius [m]
Default: 0.016
number_pipes=integer
Number of pipes in the borehole
Default: 4
grout_conductivity=double
Thermal conductivity of the borehole filling (geothermal grout) [W m-1 K-1]
Default: 2
fluid_limit_temperature=double
Minimum or maximum fluid temperature [degrees C]
Default: -2
lifetime=integer
Simulated lifetime of the plant [years]
Default: 50
power=name [required]
Name of output raster map with the geothermal power potential [W]
energy=name [required]
Name of output raster map with the geothermal energy potential [MWh]
length=name
Name of output raster map with the geothermal length of the BHE [m]
-d
Debug with intermediate maps
--overwrite
Allow output files to overwrite existing files
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--qq
Very quiet module output
--ui
Force launching GUI dialog
ground_conductivity : str, required
Raster with depth-averaged ground thermal conductivity lambda [W m-1 K-1]
Used as: input, raster, name
heating_season_raster : str, optional
Raster with the Heating Season [0-365] days
Used as: input, raster, name
heating_season_value : float, optional
Heating Season [0-365] days
Used as: double
Allowed values: 0-365
Default: 180.
power_value : float, optional
Power value in kW
Used as: double
Default: nan
ground_capacity_raster : str, optional
Raster with depth-averaged ground thermal capacity rho_c [MJ m-3 K-1]
Used as: input, raster, name
ground_capacity_value : float, optional
Value with depth-averaged ground thermal capacity rho_c [MJ m-3 K-1]
Used as: double
Default: 2.5
ground_temp_raster : str, optional
Raster with the initial ground temperature T0 [degrees C]
Used as: input, raster, name
ground_temp_value : float, optional
Value with the initial ground temperature T0 [degrees C]
Used as: double
Default: 10.
borehole_radius : float, optional
Borehole radius [m]
Used as: double
Default: 0.075
borehole_resistence : float, optional
Borehole thermal resistence [m K W-1]
Used as: double
Default: nan
borehole_length : float, optional
Borehole length [m]
Used as: double
Default: 100
pipe_radius : float, optional
Pipe radius [m]
Used as: double
Default: 0.016
number_pipes : int, optional
Number of pipes in the borehole
Used as: integer
Default: 4
grout_conductivity : float, optional
Thermal conductivity of the borehole filling (geothermal grout) [W m-1 K-1]
Used as: double
Default: 2
fluid_limit_temperature : float, optional
Minimum or maximum fluid temperature [degrees C]
Used as: double
Default: -2
lifetime : int, optional
Simulated lifetime of the plant [years]
Used as: integer
Default: 50
power : str, required
Name of output raster map with the geothermal power potential [W]
Used as: output, raster, name
energy : str, required
Name of output raster map with the geothermal energy potential [MWh]
Used as: output, raster, name
length : str, optional
Name of output raster map with the geothermal length of the BHE [m]
Used as: output, raster, name
flags : str, optional
Allowed values: d
d
Debug with intermediate maps
overwrite: bool, optional
Allow output files to overwrite existing files
Default: False
verbose: bool, optional
Verbose module output
Default: False
quiet: bool, optional
Quiet module output
Default: False
superquiet: bool, optional
Very quiet module output
Default: False
DESCRIPTION
r.green.gshp.theoretical assess the shallow geothermal potential defined as the thermal power exchanged by a Borehole Heat Exchanger of a certain depth. This potential depends on the thermal properties of the ground and the plant features. This module returns two output raster maps with the the energy potential (MWh/year) and the power potential (W). In this module the output is the theoretical maximum energy that can be converted in the ideal case without considering the financial and spatial constraints.
NOTES
The required inputs are the the thermal conductivity. If not specific values are indicated, reference values have been assumed for the ground features and the plant.
EXPLANATION
r.green.gshp.theoretical calculates the potential of shallow geothermal energy by means of and empirical relationship proposed by Casasso et al. (2016) as:
Pgshp=8*(T0 - Tlim) λ L t'c/(-0.619 t'c log(u's)-0.455 t'c-1.619+4 π Rb)
where
T0 is the undisturbed ground temperature (°C),
Tlim the threshold temperature of the heat carrier fluid
setting to 2°C,
λ is the the thermal conductivity of the ground (W/(mK)),
L the borehole length (m),
t'c is is the operating time ratio ,
u's is a parameter depending on the simulaion time and
the borehole radius ,
Rb is the thermal resistance (K/W)
EXAMPLES
This example is based on the case-study of the EUSALP region, located in Europe and covering part of Italian, Slovenian, Austrian, German, Swiss and France territories. The data can be downloades at the following repositories EUSALP dataset.
r.green.gshp.theoretical \
ground_conductivity=conductivity \
heating_season_raster=season_heating \
ground_temp_raster=ground_temperature \
ground_capacity_value=2.3 \
power=gpot_power \
energy=gpot_energy \
REFERENCES
Alessandro Casasso, Rajandrea Sethi, 2016,
"G.POT: A quantitative method for the assessment and mapping of the
shallow geothermal potential"
Energy 106, p 765 --
https://doi.org/10.1016/j.energy.2016.03.091
SEE ALSO
r.green.hydro.technical, r.green.hydro.technical
AUTHORS
Pietro Zambelli (Eurac Research, Bolzano, Italy), Tested by and manual written by Giulia Garegnani
SOURCE CODE
Available at: r.green.gshp.theoretical source code
(history)
Latest change: Friday Feb 21 12:27:42 2025 in commit 8fce680