Skip to content

r.traveltime

Estimation of travel times/isochrones.

Computes the travel time of surface runoff to an outlet

r.traveltime [-q] dir=name accu=name dtm=name manningsn=name out_x=string out_y=string threshold=string b=string nchannel=string dis=string [slopemin=string] out=name [--overwrite] [--verbose] [--quiet] [--qq] [--ui]

Example:

r.traveltime dir=name accu=name dtm=name manningsn=name out_x=string out_y=string threshold=string b=string nchannel=string dis=string out=name

grass.script.run_command("r.traveltime", dir, accu, dtm, manningsn, out_x, out_y, threshold, b, nchannel, dis, slopemin=None, out, flags=None, overwrite=False, verbose=False, quiet=False, superquiet=False)

Example:

gs.run_command("r.traveltime", dir="name", accu="name", dtm="name", manningsn="name", out_x="string", out_y="string", threshold="string", b="string", nchannel="string", dis="string", out="name")

Parameters

dir=name [required]
    Flow direction map (e.g. derived by r.watershed)
accu=name [required]
    Flow accumulation map (e.g. derived by r.watershed)
dtm=name [required]
    Depressionless, filled terrain model (e.g. derived by r.fill.dir)
manningsn=name [required]
    Map with Manning's n value for surface roughness
out_x=string [required]
    x coordinate of basin outlet
out_y=string [required]
    y coordinate of basin outlet
threshold=string [required]
    Minimum number of cells (threshold) that classify cell as channel
b=string [required]
    Channel width
nchannel=string [required]
    Channel roughness (Manning's n)
dis=string [required]
    Specific discharge [l/s/km**2]
slopemin=string
    Minimum slope for flat areas [m/m]
out=name [required]
    Output travel time map [seconds]
-q
    Quiet
--overwrite
    Allow output files to overwrite existing files
--help
    Print usage summary
--verbose
    Verbose module output
--quiet
    Quiet module output
--qq
    Very quiet module output
--ui
    Force launching GUI dialog

dir : str, required
    Flow direction map (e.g. derived by r.watershed)
    Used as: input, raster, name
accu : str, required
    Flow accumulation map (e.g. derived by r.watershed)
    Used as: input, raster, name
dtm : str, required
    Depressionless, filled terrain model (e.g. derived by r.fill.dir)
    Used as: input, raster, name
manningsn : str, required
    Map with Manning's n value for surface roughness
    Used as: input, raster, name
out_x : str, required
    x coordinate of basin outlet
    Used as: input, raster
out_y : str, required
    y coordinate of basin outlet
    Used as: input, raster
threshold : str, required
    Minimum number of cells (threshold) that classify cell as channel
    Used as: input, raster
b : str, required
    Channel width
    Used as: input, raster
nchannel : str, required
    Channel roughness (Manning's n)
    Used as: input, raster
dis : str, required
    Specific discharge [l/s/km**2]
    Used as: input, raster
slopemin : str, optional
    Minimum slope for flat areas [m/m]
    Used as: input, raster
out : str, required
    Output travel time map [seconds]
    Used as: output, raster, name
flags : str, optional
    Allowed values: q
    q
        Quiet
overwrite: bool, optional
    Allow output files to overwrite existing files
    Default: False
verbose: bool, optional
    Verbose module output
    Default: False
quiet: bool, optional
    Quiet module output
    Default: False
superquiet: bool, optional
    Very quiet module output
    Default: False

DESCRIPTION

r.traveltime computes the travel time of surface runoff to an outlet. The program starts at the basin outlet and calculates the travel time for each raster cell recursively. A drainage area related threshold considers either surface runoff or channel runoff. Travel times are derived by assuming kinematic wave approximation.
In order to derive channel flow velocities, an equilibrium discharge for each cell is calculated (Q=Area*specific discharge).
The results can be used to derive a time-area function. This might be useful for precipitation-runoff calculations (estimation of flood predictions) with a lumped hydrological model (user-specified unit hydrograph).

REMARKS

The program ist restricted to SI units (meters). The algorithm is recursive. Maybe it will not work with extensive datasets. It is assumed that the minimum slope is 0.001. For smaller gradients the program uses this value.
Please not that the flow accumulation map must be defined as single direction. Multiple flow directions are not supported. Thus, the "SFD (D8) flow" option has to be set if, e.g., the r.watershed module is used to generate the input files (parameter s). The flow accumulation map should include positive values only (-a of r.watershed). Flow direction definitions are in accordance to the r.fill.dir program using the "agnps" format option.

KNOWN ISSUES

The program does not work correctly if Manning's roughness grid is defined as double (float expected). To define a simple uniform roughness distribution try: r.mapcalc 'roughness = 0.1f'

EXAMPLE

This example uses the North Carolina sample dataset.

g.region raster=elevation
r.mapcalc "n = 0.1f"
r.fill.dir input=elevation output=fill direction=flowdir format=agnps
r.fill.dir input=fill output=fill2 direction=flowdir2 format=agnps
r.watershed -a -s elevation=fill2 accumulation=accu
r.traveltime --overwrite dir=flowdir2 accu=accu dtm=fill2 manningsn=n \
    out_x=634613 out_y=217014 threshold=250 b=3 nchannel=0.03 slopemin=0.01 \
    dis=900 out=ttime
r.colors ttime colors=blues

image-alt

SEE ALSO

r.watershed, r.fill.dir
https://jesbergwetter.twoday.net/stories/4845555/

REFERENCES

  • Kilgore, J. L. (1997): Development and evaluation of a GIS-based spatially distributed unit hydrograph model, master thesis, Virginia Polytechnic Institute and State University.
  • Melesse, A. M., Graham, W. D. (2004): Storm runoff predicition based on a spatially distributed travel time method utilizing remote sensing and GIS, Journal of the American Water Resources Association, 8, 863-879.
  • Muzik, I. (1996): Flood modelling with GIS-derived distributed unit hydrographs, Hydrological Processes, 10, 1401-1409.

AUTHOR

Kristian Foerster

SOURCE CODE

Available at: r.traveltime source code (history)
Latest change: Friday Feb 21 10:10:05 2025 in commit 7d78fe3