NAME
r.maxent.lambdas - Computes raw or logistic prediction maps from MaxEnt lambdas files
KEYWORDS
raster,
maxent,
ecology,
niche,
parallel
SYNOPSIS
r.maxent.lambdas
r.maxent.lambdas --help
r.maxent.lambdas [-pnNc] lambdas_file=name [alias_file=name] [logistic=name] [raw=name] [ndigits=integer] [nprocs=integer] width=integer height=integer [--overwrite] [--help] [--verbose] [--quiet] [--ui]
Flags:
- -p
- Print only
- Print mapcalculator expressions and exit
- -n
- Do not include cells where any variabel contains no data
- -N
- Do not include cells where all variabels contain no data
- -c
- Clamp values in raster maps to value range seen by the MaxEnt model
- --overwrite
- Allow output files to overwrite existing files
- --help
- Print usage summary
- --verbose
- Verbose module output
- --quiet
- Quiet module output
- --ui
- Force launching GUI dialog
Parameters:
- lambdas_file=name [required]
- MaxEnt lambdas-file to compute distribution-model from
- alias_file=name
- CSV-file to replace alias names from MaxEnt by GRASS map names
- logistic=name
- Raster map with logistic output
- raw=name
- Raster map with raw output
- ndigits=integer
- Produce logistic output as integer map with this number of digits preserved
- Default: 0
- nprocs=integer
- Number of r.mapcalc processes to run in parallel (requires r.mapcalc.tiled addon)
- Options: 1-
- Default: 1
- width=integer [required]
- Width of tiles (columns) (requires r.mapcalc.tiled addon and nprocs > 1)
- Default: 1000
- height=integer [required]
- Height of tiles (requires r.mapcalc.tiled addon and nprocs > 1)
- Default: 1000
The script is intended to compute (
raw) or (
logistic) prediction
maps from a lambdas file produced with MaxEnt >= 3.3.3e.
It will parse the specified lambdas_file from MaxEnt >= 3.3.3e and translate it
into an r.mapcalc-expression. If alias names had been used in MaxEnt, these alias
names can automatically be replaced according to a CSV-like file (alias_file)
provided by the user, as it can be produced with
r.out.maxent_swd. This file should contain alias names in the first
column and map names in the second column, separated by comma, without header.
It should look e.g. like this:
alias_1,map_1
alias_2,map_2
...,...
If such a CSV-file with alias names used in MaxEnt is provided, the alias
names from MaxEnt are replaced by raster map names.
The logistic map can be produced as an integer map. To do so the user has to
specify the number of decimal places, that should be preserved in integer output
in the ndigits option.
Optionally the map calculator expressions can be printed to stdout with the
p-flag for inspection or documentation as they likely exceed the space
in the map history.
By default, NoData for each function in the lambdas file is set to zero. The
user can however choose to set pixels to null where a single variable contains
NoData (n-flag) or where all variables produce NoData (N-flag).
Extraction of random points in MaxEnt can be a reason why values in raster maps
exceed values seen by the MaxEnt model. To limit raster map values to the valid
range for the model, raster map values can be clamped to the value range in the
model with the c-flag.
Complex models (and thus mapcalculator expressions) can become CPU intensive to
process. On multicore computers, processing such large models can benefit from tiled,
parallel processing (nprocs larger than 1). This requires that the
r.mapcalc.tiled addon is installed. The size of tiles can be controlled by
the height and width options.
This script works only if the maps containing the input data to MaxEnt are
accessible from the current region.
Due to conversion from double to floating-point in exp()-function, a loss of
precision from the 7th decimal place onwards may occur in the logistic output.
Differences to logistic predictions from MaxEnt are supposed to be below 0.0001.
This can be checked by importing sample or background predictions from the MaxEnt
output (e.g. with
r.in.xyz).
- Wilson, Peter D. 2009: Guidelines for computing MaxEnt model output values
from a lambdas file. (Available at
https://gsp.humboldt.edu/OLM/Courses/GSP_570/Learning%20Modules/10%20BlueSpray_Maxent_Uncertinaty/MaxEnt%20lambda%20files.pdf)
- Steven J. Phillips, Miroslav Dudík, Robert E. Schapire. 2020: Maxent software
for modeling species niches and distributions (Version 3.4.1).
Available from url:
https://biodiversityinformatics.amnh.org/open_source/maxent
and https://github.com/mrmaxent/Maxent
- Steven J. Phillips, Miroslav Dudík, Robert E. Schapire. 2004: A maximum entropy
approach to species distribution modeling. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 655-662, 2004.
- Steven J. Phillips, Robert P. Anderson, Robert E. Schapire. 2006: Maximum entropy
modeling of species geographic distributions. Ecological Modelling, 190:231-259, 2006.
- Jane Elith, Steven J. Phillips, Trevor Hastie, Miroslav Dudík, Yung En Chee,
Colin J. Yates. 2011: A statistical explanation of MaxEnt for ecologists. Diversity and
Distributions, 17:43-57, 2011.
r.in.xyz,
r.mapcalc,
r.mapcalc.tiled (Addon)
r.out.maxent_swd (Addon)
Stefan Blumentrath, Norwegian Institute for Nature Research (NINA),
https://www.nina.no
SOURCE CODE
Available at:
r.maxent.lambdas source code
(history)
Latest change: Monday Nov 11 18:04:48 2024 in commit: 59e289fdb093de6dd98d5827973e41128196887d
Main index |
Raster index |
Topics index |
Keywords index |
Graphical index |
Full index
© 2003-2024
GRASS Development Team,
GRASS GIS 8.5.0dev Reference Manual